Pooling samples could boost corona test efficiency


Mar 22, 2020

CSH Policy Brief 4/2020

 

Pooling corona tests could boost test efficiency by a factor of 10

 

According to calculations by the Complexity Science Hub Vienna (CSH), significantly more people could be tested for SARS-CoV-19 with the tests currently available if several samples were combined into one test [1]. The method presented here indicates the optimal pooling size. With 10,000 actually infected persons in Austria, about 45,000 people could be tested with 3,000 tests available daily. If the number of infected persons is 100,000, about 15,000 people could be tested daily. Pooling could thus help to significantly alleviate bottlenecks in testing.

 

Background

 

Many countries, including Austria, face a shortage of tests for the SARS-CoV-2 virus. Pooling strategies for testing potentially infected persons are a practically free way of multiplying the efficiency of the tests while the level of infection of the population is still low.

 

In the simplest version of pooling, samples from several people are given together and tested with a single test. If the test is negative, all the people tested are negative. If the test is positive, all persons are tested individually. If the infection level of the population is low, this can lead to considerable increases in testing efficiency.

 

The method

 

In pooling strategies, samples from several people are combined and evaluated in one test. In this way, the effective number of people measured per test can be increased massively. The quality of the method depends on the number of infections in the population. With an infection rate of 0.1 percent, up to 15 persons can be measured per test, i.e. the same number of tests can test 15 times more persons. At an infection rate of 1 percent, 5 people can be tested per test. With 10 percent infected, the effectiveness of the method drops to under 2 persons per test.

 

Results in detail

 

The proposed method is a formula which, on the one hand, indicates how many people can be pooled, i.e. how many samples are to be measured together in one test. On the other hand, it estimates the degree of efficiency: i.e. how many people can be effectively tested with one test.

 

The results are shown in Figure 1 (blue curve). The x-axis shows the infection level of the population, the y-axis the optimal pooling size (see Figure 1 [a]).

 

Figure 1 (b) shows the number of people that can be measured with one test.

 

Figure 1 (c) shows the expected error rate (“false negatives”) of the pooling method.

 

 

Pooling of SARS-CoV-2 samples

Fig. 1. (a) Optimal pooling size for a given infection level in the population. (b) Individuals that can be effectively measured by a test. The tables within the graphs show the situation for low levels of infection. (c) Error rates ("false negatives") of the pooling procedure.
© CSH Vienna

Fig. 1 (a) Optimal pooling size for a given infection level in the population.
(b) Individuals that can be effectively measured by a test. The tables within the graphs show the situation for low levels of infection.
(c) Error rates (“false negatives”) of the pooling procedure.

Conclusion of the CSH

 

Assuming that there are currently 10,000 actually infected persons in Austria, the optimal pooling size is approximately 32 samples per test. In this case, with 3,000 tests available daily, about 45,000 people could be tested in Austria.

 

If the number of infected persons is 100,000, the optimal pooling size is 11, which means that with 3,000 tests, 15,000 persons could be tested daily.

 

Assuming a number between 10,000 and 100,000 infected persons, the optimal pooling size will be about 20 samples per test. Here, it can be assumed that about 30,000 people can be tested daily.

 

As the infection level of the population increases, the pooling size as shown in Figure 1 (a) should be reduced.

 

Of course, there could be practical and logistical problems in laboratories and testing facilities that would make the method hard to implement.

 

 

CSH scientists Rudolf Hanel and Stefan Thurner, Medical University of Vienna

 

 

[1]   R Hanel, S Thurner, Boosting test efficiency by pooled testing strategies for SARS-CoV-2, March 21, 2020

 

 

 

CSH Policy Brief 4/2020

 

Pooling von Coronavirus-Tests kann die Anzahl der getesteten Personen pro verfügbarem Test massiv erhöhen

 

Laut Berechnungen des Complexity Science Hub Vienna (CSH) könnten mit den derzeit verfügbaren Tests deutlich mehr Personen auf SARS-CoV-19 untersucht werden, wenn mehrere Proben zu einem Test zusammengeführt werden [1]. Die hier vorgestellte Methode gibt die optimale Pooling-Größe an. Bei 10.000 tatsächlich infizierten Personen in Österreich könnten mit 3.000 täglich verfügbaren Tests etwa 45.000 Menschen getestet werden. Liegt die Zahl der Infizierten bei 100.000, könnten etwa 15.000 Menschen täglich getestet werden. Pooling könnte somit dabei helfen, Engpässe bei den Tests deutlich zu entschärfen.

 

Hintergrund

 

Viele Länder, darunter auch Österreich, sind mit einer Knappheit von Tests für das SARS-CoV-2-Virus konfrontiert. Pooling-Strategien zum Testen von möglicherweise Infizierten sind eine praktisch kostenlose Möglichkeit, die Effizienz der Tests zu vervielfachen, solange der Infektionsgrad der Bevölkerung noch gering ist.

 

In der einfachsten Version von Pooling werden Proben von mehreren Personen zusammen gegeben und mit einem einzigen Test getestet. Ist der Test negativ, sind alle gemessenen Personen negativ. Ist der Test positiv, werden alle Personen einzeln getestet. Bei einem geringen Infektionsgrad der Bevölkerung kann man so beträchtliche Effizienzsteigerungen beim Testen erreichen.

 

Das Verfahren

 

Bei Pooling-Strategien werden Proben von mehreren Personen zusammengefasst und in einem Test ausgewertet. So kann die effektive Zahl der gemessenen Personen pro Test massiv gesteigert werden. Die Qualität der Methode hängt von der Zahl der Infektionen in der Population ab. Bei einem Infektionslevel von 0,1 Prozent kann die Methode bis zu 15 Personen pro Test messen, das heißt, mit derselben Anzahl von Tests können 15 Mal mehr Personen getestet werden. Bei einem Infektionsgrad von 1 Prozent können noch immer 5 Personen pro Test getestet werden. Bei 10 Prozent Infizierten sinkt die Wirksamkeit der Methode auf knapp 2 Personen pro Test.

 

Ergebnisse im Detail

 

Die vorgeschlagene Methode ist eine Formel, die einerseits angibt, wie viele Personen gepoolt werden, also wie viele Proben zusammen in einem Test gemessen werden sollen. Andererseits schätzt sie den Effizienzgrad ab: also wie viele Leute effektiv mit einem Test getestet werden können.

 

Die Ergebnisse sind in Abb. 1 dargestellt (blaue Kurve). Die x-Achse zeigt den Infektionsgrad der Bevölkerung, die y-Achse die optimale Pooling-Größe (Abb. 1 (a)).

 

Abb. 1 (b) zeigt die Anzahl der Personen, die mit einem Test gemessen werden können.

 

Abb. 1 (c) gibt die zu erwartende Fehlerrate („false negatives“) der Pooling-Methode an.

 

 

 Pooling von SARS-CoV-2-Samples

Fig. 1. (a) Optimal pooling size for a given infection level in the population. (b) Individuals that can be effectively measured by a test. The tables within the graphs show the situation for low levels of infection. (c) Error rates ("false negatives") of the pooling procedure.
© CSH Vienna

Abb 1 (a) Optimale Pooling-Größe für einen gegebenen Infektionsgrad in der Bevölkerung.
(b) Personen, die effektiv mit einem Test gemessen werden können. Die Vergrößerungen innerhalb der Grafik zeigen die Situation für niedrige Infektionsgrade.
(c) Fehlerraten („false negatives“) des Pooling-Verfahrens.

Fazit des CSH

 

Unter der Annahme, dass es derzeit in Österreich 10.000 tatsächlich infizierte Personen gibt, ergibt sich eine optimale Pooling-Größe von ca. 32 Samples pro Test. In Österreich könnten in diesem Fall mit 3.000 täglich verfügbaren Tests etwa 45.000 Menschen getestet werden.

 

Liegt die Zahl der Infizierten bei 100.000 Personen, ist die optimale Pooling-Größe 11. Damit könnten mit 3.000 Tests 15.000 Personen täglich getestet werden.

 

Nimmt man eine Zahl zwischen 10.000 und 100.000 Infizierten an, wird die optimale Pooling-Größe bei etwa 20 Samples pro Test liegen. Hier kann man davon ausgehen, etwa 30.000 Menschen täglich testen zu können.

 

Mit der Erhöhung des Infektionsgrades der Bevölkerung ist die Pooling-Größe gemäß Abb. 1 (a) zu reduzieren.

 

Einschränkend ist zu sagen, dass diesem Vorschlag konkrete Probleme in den Laboren und Teststellen entgegenstehen könnten.

 

 

 

CSH Wissenschaftler Rudolf Hanel und Stefan Thurner, MedUni Wien

 

 

[1]   R Hanel, S Thurner, Boosting test efficiency by pooled testing strategies for SARS-CoV-2, March 21, 2020

About the CSH

The Complexity Science Hub Vienna was founded with the aim of using Big Data for the benefit of society. Among other things, the CSH systematically and strategically prepares large data sets so that they can be used in agent-based models. These simulations allow the effects of decisions in complex situations to be tested in advance and systematically assessed. Thus, the CSH provides fact-based foundations for an evidence-based governance.

CSH Policy Briefs  present socially relevant statements that can be derived from CSH research results.

Über den CSH

Der Complexity Science Hub Vienna wurde gegründet mit dem Ziel, Big Data zum Wohle der Gesellschaft zu nutzen. Unter anderem werden am CSH große Datensätze systematisch und strategisch so aufbereitet, dass sie in Agenten-basierten Modellen verwendet werden können. Diese Simulationen erlauben es, Auswirkungen von Entscheidungen in komplexen Situationen vorab zu testen und systematisch einzuschätzen. Damit liefert der CSH faktenbasierte Grundlagen für eine evidenzbasierte Governance.

CSH Policy Briefs enthalten gesellschaftlich relevante Aussagen, die sich aus Forschungsergebnissen des CSH ableiten lassen.


News

May 12, 2022

CSH study dissects an economy into its finest details

Press

Folgen für Österreich ohne Erdgas aus Russland [feat. Stefan Thurner]


Ö1 [Austrian Broadcasting Corp. Radio], May 24, 2022

News

May 5, 2022

How to create a functional bicycle infrastructure

Event

CSH Talk by Frank Schweitzer: "Sociophysics: What can we know? What must we do? What may we hope?"


Jun 02, 2022 | 10:3011:30

Complexity Science Hub Vienna

Event

CSH External Faculty Meeting 2022


May 30, 2022May 31, 2022

Complexity Science Hub Vienna

Publication

C. Diem, A. Borsos, T. Reisch, J. Kertész, S. Thurner

Quantifying firm-level economic systemic risk from nation-wide supply networks

Scientific Reports 12 (7719) (2022)

Unkategorisiert

May 24, 2022

The economic impact of a halt of Russian gas to Austria

Publication

K. Devriendt, S. Martin-Gutierrez, R. Lambiotte

Variance and Covariance of Distributions on Graphs

SIAM Review 64 (2) (2022) 343–359

Press

The Logic of the Meat Grinder [feat. Peter Turchin]


American Greatness, May 17, 2022

Press

PREPARE FOR THE NEXT SUPPLY CHAIN DISRUPTION. [feat. Stefan Thurner]


Scientific Inquirer, May 17, 2022

Event

CSH Panel Discussion: "Managing a dramatically changing world—What science can contribute"


May 30, 2022 | 16:3018:00

Complexity Science Hub Vienna

Publication

C. Doblinger, K. Surana, D. Li, N. Hultman, L. Diaz Anadón

How do global manufacturing shifts affect long-term clean energy innovation? A study of wind energy suppliers

Research Policy 51 (7) (2022) 104558

News

May 12, 2022

CSH study dissects an economy into its finest details

Press

Folgen für Österreich ohne Erdgas aus Russland [feat. Stefan Thurner]


Ö1 [Austrian Broadcasting Corp. Radio], May 24, 2022

News

May 5, 2022

How to create a functional bicycle infrastructure

Event

CSH Talk by Frank Schweitzer: "Sociophysics: What can we know? What must we do? What may we hope?"


Jun 02, 2022 | 10:3011:30

Complexity Science Hub Vienna

Event

CSH External Faculty Meeting 2022


May 30, 2022May 31, 2022

Complexity Science Hub Vienna

Publication

C. Diem, A. Borsos, T. Reisch, J. Kertész, S. Thurner

Quantifying firm-level economic systemic risk from nation-wide supply networks

Scientific Reports 12 (7719) (2022)

Unkategorisiert

May 24, 2022

The economic impact of a halt of Russian gas to Austria

Publication

K. Devriendt, S. Martin-Gutierrez, R. Lambiotte

Variance and Covariance of Distributions on Graphs

SIAM Review 64 (2) (2022) 343–359

Press

The Logic of the Meat Grinder [feat. Peter Turchin]


American Greatness, May 17, 2022

Press

PREPARE FOR THE NEXT SUPPLY CHAIN DISRUPTION. [feat. Stefan Thurner]


Scientific Inquirer, May 17, 2022

Event

CSH Panel Discussion: "Managing a dramatically changing world—What science can contribute"


May 30, 2022 | 16:3018:00

Complexity Science Hub Vienna

Publication

C. Doblinger, K. Surana, D. Li, N. Hultman, L. Diaz Anadón

How do global manufacturing shifts affect long-term clean energy innovation? A study of wind energy suppliers

Research Policy 51 (7) (2022) 104558

Unkategorisiert

May 24, 2022

The economic impact of a halt of Russian gas to Austria

News

May 12, 2022

CSH study dissects an economy into its finest details

News

May 5, 2022

How to create a functional bicycle infrastructure

News

Apr 20, 2022

Event discusses cryptoasset analytics

News

Apr 12, 2022

CSH publishes first global Corona Dashboard for animals

News

Mar 28, 2022

An analysis of the economic ties between Ukraine, Russia, and the EU

News

Mar 22, 2022

Colombian Diaspora makes an economic difference

News

Mar 19, 2022

CSH contributes to World Happiness Report 2022

News

Mar 15, 2022

Economic shocks shaking Russia and the World

Spotlight

Mar 11, 2022

Peter Klimek nominated for "Communicator of the Year"

News

Mar 4, 2022

Effects of a total loss in Ukrainian food production

News

Feb 10, 2022

Ranking algorithms can reinforce inequalities in social networks

Press

Folgen für Österreich ohne Erdgas aus Russland [feat. Stefan Thurner]


Ö1 [Austrian Broadcasting Corp. Radio], May 24, 2022

Press

PREPARE FOR THE NEXT SUPPLY CHAIN DISRUPTION. [feat. Stefan Thurner]


Scientific Inquirer, May 17, 2022

Press

The Logic of the Meat Grinder [feat. Peter Turchin]


American Greatness, May 17, 2022

Press

Mapping a country's entire economy to predict—and prepare for—the next supply chain disruption [feat. Christian Diem]


Phys.org, May 12, 2022

Press

Wie man optimale Radweg-Netze für Städte plant [feat. Michael Szell]


Nau, May 4, 2022

Press

Election forensics [Opinion] [feat. Peter Klimek]


Business Mirror, May 4, 2022

Press

Estatinas: el vínculo con la osteoporosis depende de la dosis [Spanish] [feat. Caspar Matzhold]


1in4mentalheatlh, May 4, 2022

Press

The pretend proletariat [feat. Peter Turchin]


The Week, Apr 29, 2022

Press

Austrijski znanstvenik: Ovog će ljeta biti više novozaraženih nego lani [Croatian] [feat. Peter Klimek]


Vecernji, Apr 29, 2022

Press

Historians' first verdict on Trump: You're fired! But there's more to it than that [feat. Peter Turchin]


Salon, Apr 23, 2022

Press

Digital humanism aims to balance human needs, emerging tech [feat. Hannah Metzler]


TechTarget, Apr 22, 2022

Publication

C. Doblinger, K. Surana, D. Li, N. Hultman, L. Diaz Anadón

How do global manufacturing shifts affect long-term clean energy innovation? A study of wind energy suppliers

Research Policy 51 (7) (2022) 104558

Publication

C. Diem, A. Borsos, T. Reisch, J. Kertész, S. Thurner

Quantifying firm-level economic systemic risk from nation-wide supply networks

Scientific Reports 12 (7719) (2022)

Publication

K. Devriendt, S. Martin-Gutierrez, R. Lambiotte

Variance and Covariance of Distributions on Graphs

SIAM Review 64 (2) (2022) 343–359

Publication

F. Neffke, L. Nedelkoska, S. Wiederhold

Skill Mismatch and the Costs of Job Displacement

CESifo Working Paper No. 9703, CESifo, Munich (2022)

Publication

R. Crescenzi, A. Dyèvre, F. Neffke

Innovation catalysts: How multinationals reshape the global geography of innovation

Economic Geography (2022) 1–29

Publication

K, Bhattacharya, A. Chakraborty

Aggregation of self-propelled particles with sensitivity to local order

Phys. Rev. E 105 (2022) 044124

Publication

K. Ledebur, M. Kaleta, J. Chen, S.D. Lindner, C. Matzhold, et al.

Meteorological factors and non-pharmaceutical interventions explain local differences in the spread of SARS-CoV-2 in Austria

PLoS Comput Biol 18 (4) (2022) e1009973

Publication

F. Momeni, F. Karimi, P. Mayr, I. Peters, S. Dietze

The many facets of academic mobility and its impact on scholars' career

Journal of Informetrics 16 (2) (2022) 101280

Publication

M. Papoutsoglou, E. S. Rigas, et al.

Online labour market analytics for the green economy: The case of electric vehicles

Technological Forecasting and Social Change 177 (2022) 121517

Publication

C. J. de Montgomery, M. Norredam, et al.

Labour market marginalisation in young refugees and their majority peers in Denmark and Sweden: The role of common mental disorders and secondary school completion

PLOS ONE 17 (2) (2022) e0263450

Publication

M. Raddant, H. Takahashi

Interdependencies of female board member appointments

International Review of Financial Analysis (2022) 102080

Publication

L. Espín-Noboa, et al.

Inequality and inequity in network-based ranking and recommendation algorithms

Scientific Reports 12 (2022) 2012

Event

CSH External Faculty Meeting 2022


May 30, 2022May 31, 2022

Complexity Science Hub Vienna

Event

CSH Panel Discussion: "Managing a dramatically changing world—What science can contribute"


May 30, 2022 | 16:3018:00

Complexity Science Hub Vienna

Event

CSH Workshop: "Stochastic dynamics for complex systems"


Jun 01, 2022Jun 03, 2022

Complexity Science Hub Vienna

Event

CSH Talk by Frank Schweitzer: "Sociophysics: What can we know? What must we do? What may we hope?"


Jun 02, 2022 | 10:3011:30

Complexity Science Hub Vienna

Event

CSH Talk by Marc Wiedermann: "Big Data and Citizen Science in the fight against COVID-19 — The Corona Data Donation Project"


Jun 03, 2022 | 15:0016:00

Event

CSH Workshop: "Decentralized Finance: Hype or Disruption?"


Jun 13, 2022

Complexity Science Hub Vienna

Event

2nd Workshop on Efficient Machine Learning


Jun 13, 2022 | 14:0019:30

Complexity Science Hub Vienna

Event

Aleszu Bajak, CSH Journalist in Residence, introduces his work & project


Jun 15, 2022 | 15:0015:30

Complexity Science Hub Vienna

Event

CSH Workshop: "Move or Perish—Scientific trajectories, inclusion, and inequality, and their consequences for transformative science"


Jun 16, 2022Jun 17, 2022

Event

CSH Workshop: "Cities as Complex Systems"


Jun 20, 2022Jun 21, 2022

Complexity Science Hub Vienna

Event

Complexity-GAINs International Summer School 2022


Jul 04, 2022Jul 15, 2022