Effects of partial time delays on synchronization patterns in Izhikevich neuronal networks


Synchronization patterns have been observed in neuronal networks and are related to many cognitive functions and information processing and even some pathological brain states. In this paper, we study a ring network of non-locally coupled Izhikevich neurons with electrical synaptic coupling. Since it has been proved that time delays through gap junctions can simplify the synchronization, here we particularly investigate the effects of partial time delays on networks synchronization.

By using two control parameters, the time delay and the probability of partial time delay, we show that partial time delays have a significant effect on the synchronization of this network. In particular, partial time delays can either increase or decrease the synchronization and also can induce synchronization transitions between coherent and incoherent states. Thus, partial time delays can cause chimera state, which is a special pattern when both synchronous and asynchronous states coexist and are strongly related to many real phenomena. Furthermore, partial time delays can change the period of synchronized neurons from period-1 to period-2 firing states that have different effects on information transmission in the brain.


M. Shafiei, F. Parastesh, M. Jalili, S. Jafari, M. Perc, M. Slavinec, Effects of partial time delays on synchronization patterns in Izhikevich neuronal networks, Eur. Phys. J. B 92 36 (2019)