Understanding frequency distributions of path-dependent processes with non-multinomial maximum entropy approaches - CSH

Understanding frequency distributions of path-dependent processes with non-multinomial maximum entropy approaches


Details


Path-dependent stochastic processes are often non-ergodic and observables can no longer be computed within the ensemble picture. The resulting mathematical difficulties pose severe limits to the analytical understanding of path-dependent processes. Their statistics is typically non-multinomial in the sense that the multiplicities of the occurrence of states is not a multinomial factor. The maximum entropy principle is tightly related to multinomial processes, non-interacting systems, and to the ensemble picture; it loses its meaning for path-dependent processes.

Here we show that an equivalent to the ensemble picture exists for path-dependent processes, such that the non-multinomial statistics of the underlying dynamical process, by construction, is captured correctly in a functional that plays the role of a relative entropy. We demonstrate this for self-reinforcing Pólya urn processes, which explicitly generalize multinomial statistics. We demonstrate the adequacy of this constructive approach towards non-multinomial entropies by computing frequency and rank distributions of Pólya urn processes. We show how microscopic update rules of a path-dependent process allow us to explicitly construct a non-multinomial entropy functional, that, when maximized, predicts the time-dependent distribution function.

 

R. Hanel, B. Corominas-Murtra, and S. ThurnerUnderstanding frequency distributions of path-dependent processes with non-multinomial maximum entropy approaches, New Journal of Physics 19 (2017) 033008