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Second law of thermodynamics
o=0

Quasi-static operation achieves equality.
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Finite speed process TN £

X
%O I - OOO

Relaxation process

(VEAVE AV

Entropy production must be strictly larger than zero!




Stronger bound than the second law?

Finite speed process
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Entropy production must be strictly larger than zero!

But we still do not know a better bound than the

second law g = 0!
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Setup of stochastic thermodynamics

System evolves stochastically
due to thermal noise
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Setup of stochastic thermodynamics

System evolves stochastically = T ey
. b &

due to thermal noise - S
Colloidal particle

Setup throughout this talk [system l
- Heat bath is in equilibrium 4

—>describe as Markov process
- Consider classical system

heat bath




Description of

classical stochastic process

State: probability distribution p.
Time evolution of p is given by master equation.
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Description of

classical stochastic process

State: probability distribution p.
Time evolution of p is given by master equation.

d \
Epw,t — Z RWW pw’,t
W’

transition matrix

normalization condition: Lw Ry’ = 0

(only R,,,,, is negative, others are nonnegative)



Definition of entropy production rate

Entropy production rate (single heat bath)

dpy,
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Definition of entropy production rate

Entropy production rate (single heat bath)

. dpy  d
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Assuming detailed balance (DB): - = e~ B(Ew=E,1)
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Expectation:
Quick process - much entropy production
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Overdamped Langevin systems

Entropy production increases as speed increases.
K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997).

E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).
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Overdamped Langevin systems

Entropy production increases as speed increases.
K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997).

E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).

=0

Is it true for general systems?



Result: Classical speed limit

For systems with detailed-balance, we have

Lp,p") =2, |pw — i | : total variation distance

T : length of time of the process
(A): averaged dynamical activity %for dtA(t)

(N. Shiraishi, K. Funo, and K. Saito, Phys. Rev. Lett. 121, 070601 (2018))



What is dynamical activity?

Dynamical activity: How frequently jumps occur.

A = ) Ryrpu(®
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Activity characterizes time-scale of dynamics.
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What is dynamical activity?
Dynamical activity: How frequently jumps occur.

A = ) Ryrpu(®

w, W/

Activity characterizes time-scale of dynamics.

Activity cf) Current
+1 +1
AN NN
+1:{7 —10

Glassy dynamics: J. P. Garrahan, et al., PRL 98, 195702 (2007).
Nonequilibrium steady state: M. Baiesi, et al., PRL 103, 010602 (2009).
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Inequality for entropy production rate

. a>2(a—b)2
(@a=b)lng=—rmg

Using this, systems with DB satisfy

0 = Z RyyrwPw ln wiww
Ry,

w!Pw!

R '\
22(}2 Py = RyyrDyyr) In 2

(Rw'wpw — wa’pw')2
RWWH%V+“RWW1%V

ww!DPw’

>

w=w/



Derivation (instantaneous quantities)
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Derivation (instantaneous quantities)

w

— 2 2 (RW’WPW _RWW’PW’)

w |wr(#w)
(R, vwP,, — Ry Pyyr)?
sz z (RywiwPy + Ry Pyyr) - z RW,W;" +RWW,PW’
w o\ Wi (#Fw) wI(£WwW) wwew wwee w

=

r N
Schwarz inequality |Y.; a;b;|* < (3, af) (3, b7)
is used.

J




Derivation (instantaneous quantities)
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Derivation (instantaneous quantities)

IA

2

N

R !/ P _R /P !/ 2
2 (RW’WPW'I'RWW’PW’)' 2 (WWW = W)

Wi (Zw) Wi (Ew) Ryrwhy + Ry Py

IA
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Derivation (instantaneous quantities)

<

IA

N
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R !/ P _R /P !/ 2
2 (RW’WPW'I'RWW’PW’)' 2 (WWW = W)

Wi (Zw) Wi (Ew) Ryrwhy + Ry Py

R.i.PB.— R, 1P, 1)2
z (RW’WPW+RWW’PW’)' z ( =z = W)

RW’WPW + RWW’PW’

WI+WwW WI+WwW

< V240



Derivation (time integration)

t d
L(pi:pf) < ZJ dt apw
0
w
T
Sf dtV20A < \/ZTO'(A)
0

This is the desired result!

L(p,p)*
7= THA)




Remark: Systems without detailed-
balance condition
Case with detailed-balance N ﬁ(P,P')Z

condition 7= 27(A)



Remark: Systems without detailed-
balance condition

Case with detailed-balance 5> ﬁ(P,P')Z
condition — 27(A)
Case without detailed-balance G > coL(p, P')z
condition (c; = 0.896..) HS = 27(A)

0ys: Hatano-Sasa entropy production
SS

. p
(Heat fQ,,_,,,’ is replaced by excess heat lnp—vé’vsl

(T. Hatano and S.-i. Sasa, Phys. Rev. Lett. 86, 3463 (2001))
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Problem: entropy production in
thermal relaxation process

Situation : relaxation process with a single heat bath
in continuous time. Suppose detailed balance.




Problem: entropy production in
thermal relaxation process

Situation : relaxation process with a single heat bath
in continuous time. Suppose detailed balance.

Goal : Deriving lower bound of entropy production

within 0 < t < 7 (denoted by gy )



Kullback-Leibler divergence

(Kullback-Leibler (KL) divergence
D(pllp’) = pr ln—

(Psuedo-)distance between p and p’.

p and p’ are close = D(p||p") is small.
p and p'arefar > D(p||p’) is large.



Main result

Entropy production is bounded by the distance
between the initial and final distributions!



Significance

Only for relaxation processes (It does not hold
in general process).

Equality holds for both7 = 0 and T = oo

It does not hold in discrete time Markov chain.



Numerical demonstration

Setup : three-state model
Take a system with anomalous (two-step) relaxation.
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Geometric visualization

Relation o9 ;1 = D(p(0)|[p°?) — D(p(7)|Ip°Y)
implies

D(p(0)|Ip*®) = D(p(0)||p(D)) + D(P(D)||p°?)

Remark:

KL-divergence <= square of distance
(in Euclid space)
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Geometric visualization

Relation o9 ;1 = D(p(0)|[p°?) — D(p(7)|Ip°Y)

implies

D(p(0)|Ip*®) = D(p(0)||p(D)) + D(P(D)||p°?)

Remark: p(7)

KL-divergence <= square of distance
(in Euclid space)

p©?

p(0)

larger than
right angle!



Restriction on possible trajectory

Given both initial and equilibrium distribution.
What is possible pass of relaxation processes?

Second law
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Restriction on possible trajectory

Obtained relation
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second law

our result




Key relation: variational expression
of entropy production rate

d
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Key relation: variational expression
of entropy production rate

d
6= =—DPO|Ip*)

. _
= max _—ED(P(t)IIq(—t))_

q(—t) : distribution evolves backward in time
under the same transition matrix with p(t).



Schematic of variational expression

- d
o= e —ED(p(t)Ilq(—t))

Difference of solid line from dashed line takes
maximum when g = p°®9.



Schematic of variational expression

6 = max —diD(p(t)IIq(—t)) q(0)= q(-At)
q t

Difference of solid line from dashed line takes
maximum when g = p°®9.
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Variational expression leads to
bound on relaxation processes

T/2 d
o= = | At DROlla(-0)
0

= D(P(0)||p(x)) p(0)
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p(7)
=q(0)



Variational expression leads to
bound on relaxation processes

T/2 d
o= = | At DROlla(-0)
0

= D(p(0)|Ip(2)) p(0)

p(t/2)

From a[o 7] 2 0[0,¢/2], We have
010 = D(p(0)||p(7)) p(7)
= q(0)



Proof of variational expression

It suffices to prove

d
—[D®l|q(-1)) = D(P®|Ip*H] = 0

for any gq.



Proof of variational expression

It suffices to prove

d
—[D®l|q(-1)) = D(P®|Ip*H] = 0
for any gq.

The left-hand side is equal to

d




Proof of variational expression




Proof of variational expression

q.
We used ) _ Rip;In (p ) = —Rj;p;jIn (pj )
i(#£5) J
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Proof of variational expression
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Proof of variational expression

1#£] 2753
iiq {4
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] ﬁ ‘ 1#] 14 i#£J
1Y Rz )
_ZRmpJ[ Jq—l—ln( Jq)]
@g% Riij



Proof of variational expression

1#£] 2753
iiq 1
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Summary

Bound on entropy production in finite-speed
processes:

L(p,p)*
7= oA

Bound on entropy production in relaxation

Process:
o = D(p(0)||p(7))
END



