Some bounds on entropy production stronger than the second law of thermodynamics

Naoto Shiraishi (Gakushuin University)

- N. Shiraishi, K Funo, and K. Saito, PRL 121, 070601 (2018).
- N. Shiraishi and K. Saito, PRL 123, 110603 (2019).

Outline

Motivation

Brief review of stochastic thermodynamics

Finite-speed processes

Relaxation processes

Outline

Motivation

Brief review of stochastic thermodynamics

Finite-speed processes

Relaxation processes

Second law of thermodynamics

Entropy production

$$\sigma \coloneqq \Delta S_{\text{system}} + \Delta S_{\text{bath}}$$

Second law of thermodynamics

Entropy production

$$\sigma \coloneqq \Delta S_{\text{system}} + \Delta S_{\text{bath}}$$

Second law of thermodynamics

$$\sigma \geq 0$$

Quasi-static operation achieves equality.

Non quasi-static processes

Various NOT quasi-static processes:

Non quasi-static processes

Various NOT quasi-static processes:

Non quasi-static processes

Various NOT quasi-static processes:

Relaxation process

Stronger bound than the second law?

Relaxation process

Entropy production must be strictly larger than zero!

Stronger bound than the second law?

Relaxation process

Entropy production must be strictly larger than zero!

But we still do not know a better bound than the second law $\sigma \geq 0$!

Outline

Motivation

Brief review of stochastic thermodynamics

Finite-speed processes

Relaxation processes

Setup of stochastic thermodynamics

System evolves stochastically due to thermal noise

Colloidal particle

Setup of stochastic thermodynamics

System evolves stochastically due to thermal noise

Colloidal particle

Setup throughout this talk

- Heat bath is in equilibrium
 →describe as Markov process
- Consider classical system

system

heat bath

Description of classical stochastic process

State: **probability distribution** p.

Time evolution of p is given by master equation.

$$\frac{d}{dt}p_{w,t} = \sum_{w'} R_{ww'}p_{w',t}$$

Description of classical stochastic process

State: probability distribution p.

Time evolution of p is given by master equation.

$$\frac{d}{dt}p_{w,t} = \sum_{w'} R_{ww'} p_{w',t}$$

transition matrix

normalization condition: $\sum_{w} R_{ww'} = 0$ (only $R_{w'w'}$ is negative, others are nonnegative)

Definition of entropy production rate

Entropy production rate (single heat bath)

$$\dot{\sigma} = -\sum_{w} \beta E_{w} \frac{dp_{w}}{dt} + \frac{d}{dt} \left(-\sum_{w} p_{w} \ln p_{w} \right)$$

Entropy increase of bath (dQ/T)

(Shannon) entropy increase of system

Definition of entropy production rate

Entropy production rate (single heat bath)

$$\dot{\sigma} = -\sum_{w} \beta E_{w} \frac{dp_{w}}{dt} + \frac{d}{dt} \left(-\sum_{w} p_{w} \ln p_{w} \right)$$

$$= \sum_{w,w'} R_{w'w} p_w \ln \frac{R_{w'w} p_w}{R_{ww'} p_{w'}}$$

Assuming detailed balance (DB): $\frac{R_{ww'}}{R_{w'w}} = e^{-\beta(E_w - E_{w'})}$

Outline

Motivation

Brief review of stochastic thermodynamics

Finite-speed processes

Relaxation processes

Entropy production versus speed: previous attempts

Expectation:

Quick process → much entropy production

Entropy production versus speed: previous attempts

Expectation:

Quick process → much entropy production

Overdamped Langevin systems Entropy production increases as speed increases.

K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997).

E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).

Entropy production versus speed: previous attempts

Expectation:

Quick process → much entropy production

Overdamped Langevin systems

Entropy production increases as speed increases.

K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997).

E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).

Is it true for general systems?

Result: Classical speed limit

For systems with detailed-balance, we have

$$\sigma \ge \frac{\mathcal{L}(p, p')^2}{2\tau \langle A \rangle}$$

 $\mathcal{L}(p,p')\coloneqq \sum_{w}|p_{w}-p'_{w}|$: total variation distance

 τ : length of time of the process

 $\langle A \rangle$: averaged dynamical activity $\frac{1}{\tau} \int_0^{\tau} dt A(t)$

What is dynamical activity?

Dynamical activity: How frequently jumps occur.

$$A(t) \coloneqq \sum_{w,w'} R_{w'w} p_w(t)$$

Activity characterizes time-scale of dynamics.

What is dynamical activity?

Dynamical activity: How frequently jumps occur.

$$A(t) \coloneqq \sum_{w,w'} R_{w'w} p_w(t)$$

Activity characterizes time-scale of dynamics.

Activity

cf) Current

What is dynamical activity?

Dynamical activity: How frequently jumps occur.

$$A(t) \coloneqq \sum_{w.w'} R_{w'w} p_w(t)$$

Activity characterizes time-scale of dynamics.

Glassy dynamics: J. P. Garrahan, et al., PRL 98, 195702 (2007).

Nonequilibrium steady state: M. Baiesi, et al., PRL 103, 010602 (2009).

Inequality for entropy production rate

$$(a-b)\ln\frac{a}{b} \ge \frac{2(a-b)^2}{a+b}$$

Inequality for entropy production rate

$$(a-b)\ln\frac{a}{b} \ge \frac{2(a-b)^2}{a+b}$$

Using this, systems with DB satisfy

$$\dot{\sigma} = \sum_{w,w'} R_{w'w} p_w \ln \frac{R_{w'w} p_w}{R_{ww'} p_{w'}}$$

$$= \frac{1}{2} \sum_{w,w'} (R_{w'w} p_w - R_{ww'} p_{w'}) \ln \frac{R_{w'w} p_w}{R_{ww'} p_{w'}}$$

$$\geq \sum_{w \neq w'} \frac{(R_{w'w} p_w - R_{ww'} p_{w'})^2}{R_{w'w} p_w + R_{ww'} p_{w'}}$$

$$\sum_{w} \left| \frac{d}{dt} p_{w} \right|$$

$$\sum_{w} \left| \frac{d}{dt} p_{w} \right| \\
= \sum_{w} \left| \sum_{w'(\neq w)} (R_{w'w} P_{w} - R_{ww'} P_{w'}) \right|$$

$$\sum_{w} \left| \frac{d}{dt} p_{w} \right|$$

$$= \sum_{w} \left| \sum_{w'(\neq w)} (R_{w'w} P_w - R_{ww'} P_{w'}) \right|$$

$$\leq \sum_{w} \sqrt{\sum_{w'(\neq w)} (R_{w'w}P_w + R_{ww'}P_{w'}) \cdot \sum_{w'(\neq w)} \frac{(R_{w'w}P_w - R_{ww'}P_{w'})^2}{R_{w'w}P_w + R_{ww'}P_{w'}}}$$

Schwarz inequality $|\sum_i a_i b_i|^2 \le (\sum_i a_i^2) (\sum_i b_i^2)$ is used.

$$\sum_{w} \left| \frac{d}{dt} p_{w} \right|$$

$$= \sum_{w} \left| \sum_{w'(\neq w)} (R_{w'w} P_w - R_{ww'} P_{w'}) \right|$$

$$\leq \sum_{w} \sqrt{\sum_{w'(\neq w)} (R_{w'w} P_w + R_{ww'} P_{w'}) \cdot \sum_{w'(\neq w)} \frac{(R_{w'w} P_w - R_{ww'} P_{w'})^2}{R_{w'w} P_w + R_{ww'} P_{w'}}}$$

$$\sum_{w} \left| \frac{d}{dt} p_{w} \right|$$

$$= \sum_{w} \left| \sum_{w'(\neq w)} (R_{w'w} P_w - R_{ww'} P_{w'}) \right|$$

$$\leq \sum_{w} \sqrt{\sum_{w'(\neq w)} (R_{w'w} P_w + R_{ww'} P_{w'}) \cdot \sum_{w'(\neq w)} \frac{(R_{w'w} P_w - R_{ww'} P_{w'})^2}{R_{w'w} P_w + R_{ww'} P_{w'}}}$$

$$\leq \sqrt{\sum_{w' \neq w} (R_{w'w} P_w + R_{ww'} P_{w'}) \cdot \sum_{w' \neq w} \frac{(R_{w'w} P_w - R_{ww'} P_{w'})^2}{R_{w'w} P_w + R_{ww'} P_{w'}}}$$

$$\sum_{w} \left| \frac{d}{dt} p_{w} \right|$$

$$= \sum_{w} \left| \sum_{w'(\neq w)} (R_{w'w} P_w - R_{ww'} P_{w'}) \right|$$

$$\leq \sum_{w} \sqrt{\sum_{w'(\neq w)} (R_{w'w}P_w + R_{ww'}P_{w'}) \cdot \sum_{w'(\neq w)} \frac{(R_{w'w}P_w - R_{ww'}P_{w'})^2}{R_{w'w}P_w + R_{ww'}P_{w'}}}$$

$$\leq \sqrt{\sum_{w'\neq w} (R_{w'w}P_w + R_{ww'}P_{w'}) \cdot \sum_{w'\neq w} \frac{(R_{w'w}P_w - R_{ww'}P_{w'})^2}{R_{w'w}P_w + R_{ww'}P_{w'}}}$$

$$\leq \sqrt{2A\dot{\sigma}}$$

Derivation (time integration)

$$\mathcal{L}(p_i, p_f) \leq \sum_{w} \int_0^{\tau} dt \left| \frac{d}{dt} p_w \right|$$

$$\leq \int_0^{\tau} dt \sqrt{2\dot{\sigma}A} \leq \sqrt{2\tau\sigma\langle A \rangle}$$

This is the desired result!

$$\sigma \geq \frac{\mathcal{L}(p,p')^2}{2\tau \langle A \rangle}$$

Remark: Systems without detailed-balance condition

Case with detailed-balance condition

$$\sigma \ge \frac{\mathcal{L}(p, p')^2}{2\tau \langle A \rangle}$$

Remark: Systems without detailed-balance condition

Case with detailed-balance condition

$$\sigma \ge \frac{\mathcal{L}(p, p')^2}{2\tau \langle A \rangle}$$

Case without detailed-balance condition ($c_0 = 0.896...$)

$$\sigma_{HS} \ge \frac{c_0 \mathcal{L}(p, p')^2}{2\tau \langle A \rangle}$$

 σ_{HS} : Hatano-Sasa entropy production

(Heat $\beta Q_{w \to w'}$ is replaced by excess heat $\ln \frac{p_{w'}^{SS}}{p_w^{SS}}$)

Outline

Motivation

Brief review of stochastic thermodynamics

Finite-speed processes

Relaxation processes

Problem: entropy production in thermal relaxation process

<u>Situation</u>: relaxation process with a single heat bath in continuous time. Suppose detailed balance.

Problem: entropy production in thermal relaxation process

<u>Situation</u>: relaxation process with a single heat bath in continuous time. Suppose detailed balance.

<u>Goal</u>: Deriving lower bound of entropy production within $0 \le t \le \tau$ (denoted by $\sigma_{[0,\tau]}$)

Kullback-Leibler divergence

Kullback-Leibler (KL) divergence

$$D(p||p') \coloneqq \sum_{i} p_{w} \ln \frac{p_{w}}{p'_{w}}$$

(Psuedo-)distance between p and p'.

$$p$$
 and p' are close $\rightarrow D(p||p')$ is small. p and p' are far $\rightarrow D(p||p')$ is large.

Main result

Entropy production is bounded by the distance between the initial and final distributions!

Significance

$$\sigma_{[0,\tau]} \geq D(p(0)||p(\tau))$$

- Only for relaxation processes (It does not hold in general process).
- Equality holds for both $\tau=0$ and $\tau=\infty$
- It does not hold in discrete time Markov chain.

Numerical demonstration

<u>Setup</u>: three-state model

Take a system with anomalous (two-step) relaxation.

Relation
$$\sigma_{[0, au]} = D(p(0)||p^{eq}) - D(p(au)||p^{eq})$$
 implies

$$D(p(0)||p^{eq}) \ge D(p(0)||p(\tau)) + D(p(\tau)||p^{eq})$$

Remark:

Relation $\sigma_{[0, au]} = D(p(0)||p^{eq}) - D(p(au)||p^{eq})$ implies

$$D(p(0)||p^{eq}) \ge D(p(0)||p(\tau)) + D(p(\tau)||p^{eq})$$

Remark:

Relation $\sigma_{[0, au]} = D(p(0)||p^{eq}) - D(p(au)||p^{eq})$ implies

$$D(p(0)||p^{eq}) \ge D(p(0)||p(\tau)) + D(p(\tau)||p^{eq})$$

Remark:

Relation $\sigma_{[0, au]} = D(p(0)||p^{eq}) - D(p(au)||p^{eq})$ implies

$$D(p(0)||p^{eq}) \ge D(p(0)||p(\tau)) + D(p(\tau)||p^{eq})$$

Remark:

$$D(p(0)||p^{eq}) \ge D(p(0)||p(\tau)) + D(p(\tau)||p^{eq})$$

Key relation: variational expression of entropy production rate

$$\dot{\sigma} = -\frac{d}{dt}D(p(t)||p^{eq})$$

Key relation: variational expression of entropy production rate

$$\dot{\sigma} = -\frac{d}{dt} D(p(t)||p^{eq})$$

$$= \max_{q} \left[-\frac{d}{dt} D(p(t)||q(-t)) \right]$$

q(-t): distribution evolves backward in time under the same transition matrix with p(t).

Schematic of variational expression

Difference of solid line from dashed line takes maximum when $q = p^{eq}$.

Schematic of variational expression

Difference of solid line from dashed line takes maximum when $q = p^{eq}$.

$$\sigma_{[0,\tau/2]} \ge -\int_0^{\tau/2} dt \frac{d}{dt} D(p(t)||q(-t))$$

$$\sigma_{[0,\tau/2]} \ge -\int_0^{\tau/2} dt \frac{d}{dt} D(p(t)||q(-t))$$

$$\sigma_{[0,\tau/2]} \ge -\int_0^{\tau/2} dt \frac{d}{dt} D(p(t)||q(-t))$$

$$= D(p(0)||p(\tau))$$

$$\sigma_{[0,\tau/2]} \ge -\int_0^{\tau/2} dt \frac{d}{dt} D(p(t)||q(-t))$$

$$= D(p(0)||p(\tau))$$

From $\sigma_{[0,\tau]} \ge \sigma_{[0,\tau/2]}$, we have

$$\sigma_{[0,\tau]} \geq D(p(0)||p(\tau))$$

It suffices to prove

$$\frac{d}{dt} \left[D(p(t)||q(-t)) - D(p(t)||p^{eq}) \right] \ge 0$$

for any q.

It suffices to prove

$$\frac{d}{dt} \left[D(p(t)||q(-t)) - D(p(t)||p^{eq}) \right] \ge 0$$

for any q.

The left-hand side is equal to

$$\frac{d}{dt} \left[\sum_{i} p_i(t) \ln \frac{p_i^{eq}}{q_i(-t)} \right]$$

$$\frac{d}{dt} \left[\sum_{i} p_i(t) \ln \left(\frac{p_i^{\text{eq}}}{q_i(-t)} \right) \right]$$

$$= \sum_{i} \sum_{j} R_{ij} p_j \ln \left(\frac{p_i^{\text{eq}}}{q_i} \right) + \sum_{i} p_i \sum_{j} \frac{R_{ij} q_j}{q_i}$$

$$\frac{d}{dt} \left[\sum_{i} p_{i}(t) \ln \left(\frac{p_{i}^{\text{eq}}}{q_{i}(-t)} \right) \right]$$

$$= \sum_{i} \sum_{j} R_{ij} p_{j} \ln \left(\frac{p_{i}^{\text{eq}}}{q_{i}} \right) + \sum_{i} p_{i} \sum_{j} \frac{R_{ij} q_{j}}{q_{i}}$$

$$= \sum_{i \neq j} R_{ij} p_{j} \ln \left(\frac{p_{i}^{\text{eq}} q_{j}}{p_{j}^{\text{eq}} q_{i}} \right) + \sum_{i \neq j} p_{i} \frac{R_{ij} q_{j}}{q_{i}} + \sum_{i} R_{ii} p_{i}$$

We used
$$\sum_{i(\neq j)} R_{ij} p_j \ln \left(\frac{q_j}{p_j^{\text{eq}}} \right) = -R_{jj} p_j \ln \left(\frac{q_j}{p_j^{\text{eq}}} \right)$$

$$\frac{d}{dt} \left[\sum_{i} p_{i}(t) \ln \left(\frac{p_{i}^{\text{eq}}}{q_{i}(-t)} \right) \right]$$

$$= \sum_{i} \sum_{j} R_{ij} p_{j} \ln \left(\frac{p_{i}^{\text{eq}}}{q_{i}} \right) + \sum_{i} p_{i} \sum_{j} \frac{R_{ij} q_{j}}{q_{i}}$$

$$= \sum_{i \neq j} R_{ij} p_{j} \ln \left(\frac{p_{i}^{\text{eq}} q_{j}}{p_{j}^{\text{eq}} q_{i}} \right) + \sum_{i \neq j} p_{i} \frac{R_{ij} q_{j}}{q_{i}} + \sum_{i} R_{ii} p_{i}$$

$$\frac{d}{dt} \left[\sum_{i} p_{i}(t) \ln \left(\frac{p_{i}^{eq}}{q_{i}(-t)} \right) \right]$$

$$= \sum_{i} \sum_{j} R_{ij} p_{j} \ln \left(\frac{p_{i}^{eq}}{q_{i}} \right) + \sum_{i} p_{i} \sum_{j} \frac{R_{ij} q_{j}}{q_{i}}$$

$$= \sum_{i \neq j} R_{ij} p_{j} \ln \left(\frac{p_{i}^{eq} q_{j}}{p_{j}^{eq} q_{i}} \right) + \sum_{i \neq j} p_{i} \frac{R_{ij} q_{j}}{q_{i}} + \sum_{i} R_{ii} p_{i}$$

$$= \sum_{i \neq j} R_{ij} p_{j} \ln \left(\frac{R_{ij} q_{j}}{R_{ji} q_{i}} \right) + \sum_{i \neq j} R_{ij} p_{j} \frac{R_{ji} q_{i}}{R_{ij} q_{j}} - \sum_{i \neq j} R_{ij} p_{j}$$

$$\frac{d}{dt} \left[\sum_{i} p_{i}(t) \ln \left(\frac{p_{i}^{\text{eq}}}{q_{i}(-t)} \right) \right]$$

$$= \sum_{i} \sum_{j} R_{ij} p_{j} \ln \left(\frac{p_{i}^{\text{eq}}}{q_{i}} \right) + \sum_{i} p_{i} \sum_{j} \frac{R_{ij} q_{j}}{q_{i}}$$

$$= \sum_{i \neq j} R_{ij} p_{j} \ln \left(\frac{p_{i}^{\text{eq}} q_{j}}{p_{j}^{\text{eq}} q_{i}} \right) + \sum_{i \neq j} p_{i} \frac{R_{ij} q_{j}}{q_{i}} + \sum_{i} R_{ii} p_{i}$$

$$= \sum_{i \neq j} R_{ij} p_{j} \ln \left(\frac{R_{ij} q_{j}}{R_{ji} q_{i}} \right) + \sum_{i \neq j} R_{ij} p_{j} \frac{R_{ji} q_{i}}{R_{ij} q_{j}} - \sum_{i \neq j} R_{ij} p_{j}$$

$$= \sum_{i \neq j} R_{ij} p_{j} \left[\frac{R_{ji} q_{i}}{R_{ij} q_{j}} - 1 - \ln \left(\frac{R_{ji} q_{i}}{R_{ij} q_{j}} \right) \right]$$

$$\begin{split} &\frac{d}{dt}\left[\sum_{i}p_{i}(t)\ln\left(\frac{p_{i}^{\mathrm{eq}}}{q_{i}(-t)}\right)\right]\\ &=\sum_{i}\sum_{j}R_{ij}p_{j}\ln\left(\frac{p_{i}^{\mathrm{eq}}}{q_{i}}\right)+\sum_{i}p_{i}\sum_{j}\frac{R_{ij}q_{j}}{q_{i}}\\ &=\sum_{i\neq j}R_{ij}p_{j}\ln\left(\frac{p_{i}^{\mathrm{eq}}q_{j}}{p_{j}^{\mathrm{eq}}q_{i}}\right)+\sum_{i\neq j}p_{i}\frac{R_{ij}q_{j}}{q_{i}}+\sum_{i}R_{ii}p_{i}\\ &=\sum_{i\neq j}R_{ij}p_{j}\ln\left(\frac{R_{ij}q_{j}}{R_{ji}q_{i}}\right)+\sum_{i\neq j}R_{ij}p_{j}\frac{R_{ji}q_{i}}{R_{ij}q_{j}}-\sum_{i\neq j}R_{ij}p_{j}\\ &=\sum_{i\neq j}R_{ij}p_{j}\left[\frac{R_{ji}q_{i}}{R_{ij}q_{j}}-1-\ln\left(\frac{R_{ji}q_{i}}{R_{ij}q_{j}}\right)\right]\\ &\geq 0. \quad \text{(We used } x-1-\ln x \geq 0\text{)} \end{split}$$

Summary

Bound on entropy production in finite-speed processes:

$$\sigma \geq \frac{\mathcal{L}(p,p')^2}{2\tau \langle A \rangle}$$

Bound on entropy production in relaxation process:

$$\sigma \geq D(p(0)||p(\tau))$$

