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Second law of thermodynamics

system

bath

Entropy production𝜎 ≔ Δ𝑆system + Δ𝑆bath
Second law of thermodynamics𝝈 ≥ 𝟎
Quasi-static operation achieves equality.
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Non quasi-static processes

Various NOT quasi-static processes:

Finite speed process

Relaxation process
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Entropy production must be strictly larger than zero!



Stronger bound than the second law?

Entropy production must be strictly larger than zero!

But we still do not know a better bound than the 

second law 𝝈 ≥ 𝟎!
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Setup of stochastic thermodynamics

heat bath

system

System evolves stochastically 

due to thermal noise

Colloidal particle

Setup throughout this talk

・Heat bath is in equilibrium

→describe as Markov process

・Consider classical system



Description of 

classical stochastic process

State: probability distribution 𝒑.

Time evolution of 𝑝 is given by master equation.

𝑑𝑑𝑡 𝑝𝑤,𝑡 =෍𝑤′ 𝑅𝑤𝑤′𝑝𝑤′,𝑡 𝑤1 𝑤2
𝑤3



Description of 

classical stochastic process

State: probability distribution 𝒑.

Time evolution of 𝑝 is given by master equation.

𝑑𝑑𝑡 𝑝𝑤,𝑡 =෍𝑤′ 𝑅𝑤𝑤′𝑝𝑤′,𝑡
normalization condition: σ𝒘𝑹𝒘𝒘′ = 𝟎
(only 𝑅𝑤′𝑤′ is negative, others are nonnegative)

𝑤1 𝑤2
𝑤3

transition matrix



Definition of entropy production rate

Entropy production rate (single heat bath)ሶ𝜎 = −෍𝑤 𝛽𝐸𝑤 𝑑𝑝𝑤𝑑𝑡 + 𝑑𝑑𝑡 −෍𝑤 𝑝𝑤 ln 𝑝𝑤
Entropy increase of bath

（𝑑𝑄/𝑇） (Shannon) entropy 

increase of system



Definition of entropy production rate

= ෍𝑤,𝑤′𝑅𝑤′𝑤𝑝𝑤 ln 𝑅𝑤′𝑤𝑝𝑤𝑅𝑤𝑤′𝑝𝑤′

Entropy production rate (single heat bath)ሶ𝜎 = −෍𝑤 𝛽𝐸𝑤 𝑑𝑝𝑤𝑑𝑡 + 𝑑𝑑𝑡 −෍𝑤 𝑝𝑤 ln 𝑝𝑤
Assuming detailed balance (DB): 

𝑅𝑤𝑤′𝑅𝑤′𝑤 = 𝑒−𝛽 𝐸𝑤−𝐸𝑤′
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K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997).

E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).
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Entropy production versus speed:

previous attempts

Overdamped Langevin systems

K. Sekimoto and S.-i. Sasa, J. Phys. Soc. Jpn. 66, 3326 (1997).

E. Aurell, et.al., J. Stat. Phys. 147, 487 (2012).

Entropy production increases as speed increases.

Expectation: 

Quick process → much entropy production

Is it true for general systems?



Result: Classical speed limit

ℒ 𝑝, 𝑝′ ≔ σ𝑤 |𝑝𝑤 − 𝑝𝑤′ | : total variation distance𝜏 : length of time of the process〈𝐴〉: averaged dynamical activity  
1𝜏 0𝜏׬ 𝑑𝑡𝐴(𝑡)

(N. Shiraishi, K. Funo, and K. Saito, Phys. Rev. Lett. 121, 070601 (2018))

For systems with detailed-balance, we have

𝜎 ≥ ℒ 𝑝, 𝑝′ 22𝜏 𝐴



What is dynamical activity?

𝐴(𝑡) ≔ ෍𝑤,𝑤′𝑅𝑤′𝑤𝑝𝑤(𝑡)Dynamical activity: How frequently jumps occur.

Activity characterizes time-scale of dynamics.
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What is dynamical activity?

𝐴(𝑡) ≔ ෍𝑤,𝑤′𝑅𝑤′𝑤𝑝𝑤(𝑡)Dynamical activity: How frequently jumps occur.

Activity characterizes time-scale of dynamics.

Glassy dynamics:

Nonequilibrium steady state:

J. P. Garrahan, et al., PRL 98, 195702 (2007).

M. Baiesi, et al., PRL 103, 010602 (2009).

+1+1
Activity +1−1

cf) Current



Inequality for entropy production rate(𝑎 − 𝑏) ln 𝑎𝑏 ≥ 2 𝑎 − 𝑏 2𝑎 + 𝑏



Inequality for entropy production rate(𝑎 − 𝑏) ln 𝑎𝑏 ≥ 2 𝑎 − 𝑏 2𝑎 + 𝑏
Using this, systems with DB satisfyሶ𝜎 = ෍𝑤,𝑤′ 𝑅𝑤′𝑤𝑝𝑤 ln 𝑅𝑤′𝑤𝑝𝑤𝑅𝑤𝑤′𝑝𝑤′= 12 ෍𝑤,𝑤′(𝑅𝑤′𝑤𝑝𝑤 − 𝑅𝑤𝑤′𝑝𝑤′) ln 𝑅𝑤′𝑤𝑝𝑤𝑅𝑤𝑤′𝑝𝑤′≥ ෍𝑤≠𝑤′

𝑅𝑤′𝑤𝑝𝑤 − 𝑅𝑤𝑤′𝑝𝑤′ 2𝑅𝑤′𝑤𝑝𝑤 + 𝑅𝑤𝑤′𝑝𝑤′
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Derivation (instantaneous quantities)

=෍𝑤 ෍𝑤′(≠𝑤) 𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′
෍𝑤 𝑑𝑑𝑡 𝑝𝑤



Derivation (instantaneous quantities)

=෍𝑤 ෍𝑤′(≠𝑤) 𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′
≤෍𝑤 ෍𝑤′(≠𝑤) 𝑅𝑤′𝑤𝑃𝑤 + 𝑅𝑤𝑤′𝑃𝑤′ ⋅ ෍𝑤′(≠𝑤) 𝑅𝑤′𝑤𝑃𝑤 − 𝑅𝑤𝑤′𝑃𝑤′ 2𝑅𝑤′𝑤𝑃𝑤 + 𝑅𝑤𝑤′𝑃𝑤′

෍𝑤 𝑑𝑑𝑡 𝑝𝑤

Schwarz inequality σ𝑖 𝑎𝑖𝑏𝑖 2 ≤ (σ𝑖 𝑎𝑖2) (σ𝑖 𝑏𝑖2)
is used.
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Derivation (time integration)

ℒ 𝑝𝑖 , 𝑝𝑓 ≤෍𝑤 න0𝜏 𝑑𝑡 𝑑𝑑𝑡 𝑝𝑤≤ න0𝜏𝑑𝑡 2 ሶ𝜎𝐴 ≤ 2𝜏𝜎〈𝐴〉
This is the desired result!𝝈 ≥ 𝓛 𝒑, 𝒑′ 𝟐𝟐𝝉 𝑨
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Remark: Systems without detailed-

balance condition𝜎 ≥ ℒ 𝑝, 𝑝′ 22𝜏 𝐴Case with detailed-balance 

condition

𝜎𝐻𝑆 ≥ 𝑐0ℒ 𝑝, 𝑝′ 22𝜏 𝐴Case without detailed-balance 

condition (𝑐0 = 0.896. . )
𝜎𝐻𝑆: Hatano-Sasa entropy production

(Heat 𝛽𝑄𝑤→𝑤′ is replaced by excess heat ln 𝑝𝑤′𝑠𝑠𝑝𝑤𝑠𝑠 )

(T. Hatano and S.-i. Sasa, Phys. Rev. Lett. 86, 3463 (2001))
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Problem: entropy production in 

thermal relaxation process

𝑡 = 0 𝑡 = 𝜏 𝑡 = ∞

Situation：relaxation process with a single heat bath 

in continuous time. Suppose detailed balance.



Problem: entropy production in 

thermal relaxation process

𝑡 = 0 𝑡 = 𝜏 𝑡 = ∞

Situation：relaxation process with a single heat bath 

in continuous time. Suppose detailed balance.

Goal：Deriving lower bound of entropy production 

within 0 ≤ 𝑡 ≤ 𝜏 (denoted by 𝜎 0,𝜏 )



Kullback-Leibler divergence

Kullback-Leibler (KL) divergence𝐷(𝑝| 𝑝′ ≔෍𝑖 𝑝𝑤 ln 𝑝𝑤𝑝𝑤′
(Psuedo-)distance between 𝑝 and 𝑝′.
𝑝 and 𝑝′ are close → 𝐷(𝑝||𝑝′) is small.𝑝 and 𝑝′ are far     → 𝐷(𝑝||𝑝′) is large.



Main result

𝑡 = 0 𝑡 = 𝜏

𝝈 𝟎,𝝉 ≥ 𝑫(𝒑(𝟎)||𝒑 𝝉 )𝑝(0) 𝑝(𝜏)

Entropy production is bounded by the distance 

between the initial and final distributions!



Significance𝝈 𝟎,𝝉 ≥ 𝑫(𝒑(𝟎)||𝒑 𝝉 )
• Only for relaxation processes (It does not hold 

in general process).

• Equality holds for both 𝜏 = 0 and 𝝉 = ∞
• It does not hold in discrete time Markov chain.



Numerical demonstration

Setup：three-state model

Take a system with anomalous (two-step) relaxation.



Geometric visualization

Relation 𝝈 𝟎,𝝉 = 𝑫(𝒑(𝟎)| 𝒑𝒆𝒒 −𝑫(𝒑(𝝉)||𝒑𝒆𝒒)
implies𝑫(𝒑(𝟎)| 𝒑𝒆𝒒 ≥ 𝑫(𝒑(𝟎)| 𝒑 𝝉 + 𝑫(𝒑(𝝉)||𝒑𝒆𝒒)

Remark: 

KL-divergence ↔ square of distance

(in Euclid space)
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Geometric visualization

Relation 𝝈 𝟎,𝝉 = 𝑫(𝒑(𝟎)| 𝒑𝒆𝒒 −𝑫(𝒑(𝝉)||𝒑𝒆𝒒)
implies𝑫(𝒑(𝟎)| 𝒑𝒆𝒒 ≥ 𝑫(𝒑(𝟎)| 𝒑 𝝉 + 𝑫(𝒑(𝝉)||𝒑𝒆𝒒)𝑝(0)𝑝(𝜏)

𝑝𝑒𝑞
larger than 

right angle!

Remark: 

KL-divergence ↔ square of distance

(in Euclid space)
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Restriction on possible trajectory

𝑝(0) 𝑝𝑒𝑞 second law

始状態と平衡分布（温度）が与えられている際、
どのような緩和の経路がありうるのか？

state space

Obtained relation𝑫(𝒑(𝟎)| 𝒑𝒆𝒒 ≥ 𝑫(𝒑(𝟎)| 𝒑 𝝉 + 𝑫(𝒑(𝝉)||𝒑𝒆𝒒)
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Restriction on possible trajectory

Obtained relation𝑫(𝒑(𝟎)| 𝒑𝒆𝒒 ≥ 𝑫(𝒑(𝟎)| 𝒑 𝝉 + 𝑫(𝒑(𝝉)||𝒑𝒆𝒒)
𝑝(0) 𝑝𝑒𝑞 second lawour result

×

×



Key relation: variational expression 

of entropy production rate

ሶ𝜎 = − 𝑑𝑑𝑡 𝐷(𝑝(𝑡)||𝑝𝑒𝑞)



Key relation: variational expression 

of entropy production rate

ሶ𝜎 = − 𝑑𝑑𝑡 𝐷(𝑝(𝑡)||𝑝𝑒𝑞)= 𝐦𝐚𝐱𝒒 − 𝒅𝒅𝒕𝑫(𝒑(𝒕)||𝒒 −𝒕 )
𝑞(−𝑡)：distribution evolves backward in time 

under the same transition matrix with 𝑝(𝑡).



Schematic of variational expression

Difference of solid line from dashed line takes 

maximum when 𝑞 = 𝑝𝑒𝑞.

ሶ𝜎 = max𝑞 − 𝑑𝑑𝑡𝐷(𝑝(𝑡)||𝑞 −𝑡 )

KL divergence 𝐷(𝑝||𝑞)



Schematic of variational expression

Difference of solid line from dashed line takes 

maximum when 𝑞 = 𝑝𝑒𝑞.

ሶ𝜎 = max𝑞 − 𝑑𝑑𝑡𝐷(𝑝(𝑡)||𝑞 −𝑡 )
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Variational expression leads to 

bound on relaxation processes

𝑝(0)

𝑝 𝜏
𝑝(𝜏/2)

𝜎 0,𝜏/2 ≥ −න0𝜏/2𝑑𝑡 𝑑𝑑𝑡 𝐷(𝑝(𝑡)||𝑞 −𝑡 )= 𝐷(𝑝(0)||𝑝 𝜏 )

= 𝑞(0)



Variational expression leads to 

bound on relaxation processes

𝑝(0)

𝑝 𝜏
𝑝(𝜏/2)

𝜎 0,𝜏/2 ≥ −න0𝜏/2𝑑𝑡 𝑑𝑑𝑡 𝐷(𝑝(𝑡)||𝑞 −𝑡 )= 𝐷(𝑝(0)||𝑝 𝜏 )

= 𝑞(0)
From 𝜎 0,𝜏 ≥ 𝜎 0,𝜏/2 , we have𝝈 𝟎,𝝉 ≥ 𝑫(𝒑(𝟎)||𝒑 𝝉 )



Proof of variational expression

𝑑𝑑𝑡 𝐷(𝑝(𝑡)| 𝑞 −𝑡 − 𝐷(𝑝(𝑡)||𝑝𝑒𝑞) ≥ 0
for any 𝑞.

It suffices to prove



Proof of variational expression

𝑑𝑑𝑡 𝐷(𝑝(𝑡)| 𝑞 −𝑡 − 𝐷(𝑝(𝑡)||𝑝𝑒𝑞) ≥ 0
for any 𝑞.

The left-hand side is equal to 𝑑𝑑𝑡 ෍𝑖 𝑝𝑖 𝑡 ln 𝑝𝑖𝑒𝑞𝑞𝑖 −𝑡

It suffices to prove



Proof of variational expression



Proof of variational expression

We used



Proof of variational expression



Proof of variational expression



Proof of variational expression



Proof of variational expression

（We used 𝑥 − 1 − ln 𝑥 ≥ 0）



Summary

• Bound on entropy production in finite-speed 

processes:

• Bound on entropy production in relaxation 

process: 𝝈 ≥ 𝑫(𝒑(𝟎)||𝒑 𝝉 )
END

𝝈 ≥ 𝓛 𝒑, 𝒑′ 𝟐𝟐𝝉 𝑨


