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Example of a multipartite process

1 2 3 4
X(t)

X(t + ot)

Four subsystems, {1, 2, 3,4}
Red arrows indicate the dependencies of their rate matrices
N.b., {3} evolves independently, but is observed by {2} and {4}

So {2} and {4} are not physically coupled, but become statistically coupled with time



Example of a multipartite process
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X(t)

X(t + ot)

Four subsystems, {1, 2, 3,4}
Red arrows indicate the dependencies of their rate matrices
N.b., {3} evolves independently, but is observed by {2} and {4}

So {2} and {4} are not physically coupled, but become statistically coupled with time

How does minimal entropy production (EP) rate depend on red arrow graph?
How are EP fluctuations of the subsystems coupled?
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Trajectory-level thermodynamics of multipartite processes

First decomposition of system-wide EP in terms of subsystem properties and
an information-theoretic property of “red arrow graph”

Resultant lower bounds on expected EP rate in terms of red arrow graph

Second decomposition of system-wide EP in terms of subsystem properties
and an information-theoretic property of “red arrow graph”

Resultant “vector” fluctuation theorem in terms of red arrow graph



X(t)
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N — set of subsystems
X  — joint state of all subsystems
x;(t) — state of subsystem i at time t

Since it’s a multipartite process:
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* A community r is a set of subsystems such that for every i e r,
K(i; t) depends only on other subsystems j € r :

K (ist) = Kir (i56)3(2_ 2 )

* Dynamics of x, depends only on X,; communities are “self-contained”
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* A community r is a set of subsystems such that for every i e r,
K(i; t) depends only on other subsystems j € r :

K (ist) = Kir (i56)3(2_ 2 )

* A community structure is a set of communities, closed under intersection, that covers N



Subsystem local detailed balance (SLDB)

Each subsystem is in contact with its own heat reservoirs:

Kzr(isk,t)
K7 (i k,t)

= BF [Ha (i3t) — Ha, (i51)]

for all i, k, t where
* ris acommunity containing subsystem i
* ks a heat reservoir

* H.(i; 1) is local Hamiltonian of subsystem i

(Can be extended to include particle reservoirs)



Subsystem local detailed balance (SLDB)

Each subsystem is in contact with its own heat reservoirs:

Kj,'.',:f (4; k,1)
K.r (i k,t)

= BF [Hor (3;t) — Ha, (i3 1)]

for all i, k, t where
* ris acommunity containing subsystem i
* ks a heat reservoir

* H.(i; 1) is local Hamiltonian of subsystem i

(Can be extended to include particle reservoirs)

* Therefore local heat flow into subsystem i during trajectory X is

Qix) =Y BY [Hy, () (1:7()) — Ho (rg-1y) (5 ()]
J

where x,.(7(j)) 1s community r’s state at j’th time that subsystem i changes state
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Local heat flow into community r during trajectory X is
=2 Q'(x)

- N.b., heat flow into community r only depends on states of subsystems in r
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* Local EP of community r during trajectory X is
o (%, )= As"(x,) — Q" (%)
* where as usual the stochastic entropy of community r during trajectory x at time ¢ is

$"(%r(£) = —Inpx, 1) (8)
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* LetR={r,r,...} be aset of communities (not necessarily a full community structure)

 Define
/

7P (x) = (a’"(x),ar (x),.. )
UR(X) — AS(X’)"UT’,U...) — Q(X’I"U’)"/U...)

* “Vector-valued detailed fluctuation theorem” (DFT):

(B

o

(with usual definition of 15(—5 R) as probability under a reverse protocol)
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Let R={r,7’, ...} be a set of communities (not necessarily a full community structure)

JLLARE

Subtract this DFT evaluated where R is a single community, 7, from this DFT evaluated
where R is a full community structure, to get a conditional IFT:

(€7 70"y =1

where as before, o is system-wide EP, and ¢” is EP of community r
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+  For any community r, system-wide EP during trajectory X is
o (x) = o"(x) + Ag™*~Hr(x) — Q™"(x)
where
- as before, local EP 0" (x;.) = As"(x,) — Q"(x;)
- S X (x(1)) = — Iy (1)) + (b, () (1)

- QT =) Q%)
iZr



o(x) = o"(x) + AsX-"Xr(x) — Q~7"(x)

» Take expectation value and differentiate:

(6(1)) = (67(0) + (6 (1)) + T §¥1% (1



o The local EP rate is (U’(f»
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This term is non-negative, and concerns an entire community

The term “0y” in (Sagawa and Shiraishi, PRE, 2015) can be negative,
and does not concern an entire community

The term “Si* > in (Horowitz and Esposito, PRX, 2014) is non-negative,
but does not concern an entire community

The term “0o” in (Sagawa and Shiraishi, PRE, 2015) is non-negative,
but concerns a subset of possible transitions of global system
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is a system-wide EP rate
- just evaluated according to a counterfactual rate matrix, K(-r; t) = X, K(i; t)

o So this term is non-negative
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is a derivative of conditional entropy, just according to a counterfactual rate matrix.

o By data-processing inequality, if r is a community, this term is non-negative
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S (t) = = D KL (13 )par (1) I paye, (1

is a derivative of conditional entropy, just according to a counterfactual rate matrix.

o By data-processing inequality, if r is a community, this term is non-negative

o If:

1) Two subsystems, where r is one of those subsystems
2) ris a community,i.e., it evolves independently
3) Full system is at an NESS
this term equals “learning rate” of (Barato, Hartich, Seifert, NJP, 2014)
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is a derivative of conditional entropy, just according to a counterfactual rate matrix.

o By data-processing inequality, if r is a community, this term is non-negative

o If:
1) Two subsystems, where r is one of those subsystems
2) Don’t require r to be a community — so lose guarantee of non-negative EP

this term equals “information flow” of (Horowitz, Esposito, PRX, 2014). (See also
(Sagawa, Ueda, NJP, 2013).)
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is a derivative of conditional entropy, just according to a counterfactual rate matrix.

o By data-processing inequality, this term is non-negative

o If:
1) Two subsystems, where r is one of those subsystems
2) Both systems are communities, i.e., they evolve independently
3) One system never changes state

this term equals (time-derivative of) “Landauer loss” (Wolpert, Kolchinsky, NJP,
2020), aka “modularity dissipation” (Boyd, Mandal, Crutchfield, PRX, 2018)
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* For any community r,

(6(1)) = (67(0) + (- (1)) + & §X1% (1

* All three terms on RHS are non-negative. So
d’r’
(1)) = 255X ()

* Therefore in the example above,

, d* de ' ,
(6(t)) > max | —SFe (1), — 8% (1), — 810w (1)
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For any community r,
. - r . d,r)
(6(1)) = (6"(8) + (o (1)) + S (2)

In the example above, w’ is a community within w.
So can “iterate” the full decomposition of expected EP rate, by decomposing (6 (%))

Therefore in the example above,

| i d*’ ,
(0(t)) 2 — ¥ (t) + —-8%1% (1)
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System-wide heat flow during trajectory X is
=Y Qix) =Y Q@ (x)
where inclusion-exclusion sum (“in-ex sum”) is

S Q) =Y Q%) — 3@ (x,) +

.,.< .,-/

Therefore system-wzde EP during trajectory X 1S

o(x) = As(x) — Q(x) Za’(x — AI*(x)

where in-ex information is
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 (Conditional IFT:

(e 70" = 1

* Second expansion of system-wide EP:
= Za"“, (x) — AI*(x)

* Combining and applying Jensen’s inequality shows that for any community r,
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Example (taking r = subsystems 3 and 4):
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CONCLUSIONS

Restrictions on dependencies of each subsystem’s rate matrix
Two system-wide decompositions of (trajectory-level) EP in terms of those restrictions
Nonzero lower bounds on expected system-wide EP rate in terms of those restrictions

- Extends results on “learning rate”, “Landauer loss”, (and versions of “second law for
feedback control”, “second law for information processing”, etc.)

Conditional fluctuation theorems
- If can observe EP of one subsystem, what is vector of EPs of other subsystems?

Other lower bounds on expected EP rate, other conditional IFTs, etc.
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