THERMODYNAMICS OF MULTIPARTITE PROCESSES WITH CONSTRAINTS ON RATE MATRIX DEPENDENCIES

David H. Wolpert

Example of a multipartite process

- Four subsystems, {1, 2, 3, 4}
- Red arrows indicate the dependencies of their rate matrices
- N.b., {3} evolves independently, but is observed by {2} and {4}
- So {2} and {4} are not physically coupled, but become statistically coupled with time

Example of a multipartite process

- Four subsystems, {1, 2, 3, 4}
- Red arrows indicate the dependencies of their rate matrices
- N.b., {3} evolves independently, but is observed by {2} and {4}
- So {2} and {4} are not physically coupled, but become statistically coupled with time

How does minimal entropy production (EP) rate depend on red arrow graph? How are EP fluctuations of the subsystems coupled?

This talk

1) Trajectory-level thermodynamics of multipartite processes

- 2) First decomposition of system-wide EP in terms of subsystem properties and an information-theoretic property of "red arrow graph"
- 3) Resultant lower bounds on expected EP rate in terms of red arrow graph
- 4) Second decomposition of system-wide EP in terms of subsystem properties and an information-theoretic property of "red arrow graph"
- 5) Resultant "vector" fluctuation theorem in terms of red arrow graph

$$x(t)$$
 $x(t + \delta t)$

N – set of subsystems

x – joint state of all subsystems

 $x_i(t)$ – state of subsystem i at time t

Since it's a multipartite process:

$$\frac{dp_x(t)}{dt} = \sum_{x'} \sum_{i \in N} K_x^{x'}(i;t) p_{x'}(t)$$

$$\forall x, x' : x_{-i} \neq x'_{-i}, K_x^{x'}(i; t) = 0$$

• A *community* r is a set of subsystems such that for every $i \in r$, K(i; t) depends only on other subsystems $j \in r$:

$$K_x^{x'}(i;t) = K_{x_r}^{x_r'}(i;t)\delta(x_{-r}',x_{-r})$$

• Dynamics of \mathbf{x}_r depends only on \mathbf{x}_r ; communities are "self-contained"

• A *community* r is a set of subsystems such that for every $i \in r$, K(i; t) depends only on other subsystems $j \in r$:

$$K_x^{x'}(i;t) = K_{x_r}^{x_r'}(i;t)\delta(x_{-r}',x_{-r})$$

• A *community structure* is a set of communities, closed under intersection, that covers N

Subsystem local detailed balance (SLDB)

Each subsystem is in contact with its own heat reservoirs:

$$\frac{K_{x_r}^{x_r'}(i;k,t)}{K_{x_r'}^{x_r}(i;k,t)} = \beta_i^k \left[H_{x_r'}(i;t) - H_{x_r}(i;t) \right]$$

for all i, k, t where

- r is a community containing subsystem i
- *k* is a heat reservoir
- $H_{x_r}(i; t)$ is **local Hamiltonian** of subsystem i

(Can be extended to include particle reservoirs)

Subsystem local detailed balance (SLDB)

Each subsystem is in contact with its own heat reservoirs:

$$\frac{K_{x_r}^{x_r'}(i;k,t)}{K_{x_r'}^{x_r}(i;k,t)} = \beta_i^k \left[H_{x_r'}(i;t) - H_{x_r}(i;t) \right]$$

for all i, k, t where

- r is a community containing subsystem i
- *k* is a heat reservoir
- $H_{x_r}(i; t)$ is **local Hamiltonian** of subsystem i

(Can be extended to include particle reservoirs)

• Therefore *local heat flow* into subsystem *i* during trajectory **x** is

$$Q^{i}(\mathbf{x}) = \sum_{\mathbf{j}} \beta_{\mathbf{i}}^{\mathbf{k}(\mathbf{j})} \left[\mathbf{H}_{\mathbf{x}_{\mathbf{r}}(\tau(\mathbf{j}))}(\mathbf{i}; \tau(\mathbf{j})) - \mathbf{H}_{\mathbf{x}_{\mathbf{r}}(\tau(\mathbf{j}-\mathbf{1}))}(\mathbf{i}; \tau(\mathbf{j})) \right]$$

where $\mathbf{x}_r(\tau(j))$ is community r's state at j'th time that subsystem i changes state

$$Q^i(\mathbf{x}) = \sum_{\mathbf{j}} \beta_{\mathbf{i}}^{\mathbf{k}(\mathbf{j})} \left[\mathbf{H}_{\mathbf{x_r}(\tau(\mathbf{j}))}(\mathbf{i}; \tau(\mathbf{j})) - \mathbf{H}_{\mathbf{x_r}(\tau(\mathbf{j}-\mathbf{1}))}(\mathbf{i}; \tau(\mathbf{j})) \right]$$

• Local heat flow into community r during trajectory x is

$$Q^r(\mathbf{x}) = \sum_{i \in r} Q^i(\mathbf{x}_r)$$

- N.b., heat flow into community r only depends on states of subsystems in r

$$Q^r(\mathbf{x}) = \sum_{i \in r} Q^i(\mathbf{x}_r)$$

• Local EP of community r during trajectory x is

$$\sigma^r(\mathbf{x}_r) = \Delta s^r(\mathbf{x}_r) - Q^r(\mathbf{x}_r)$$

• where as usual the **stochastic entropy** of community r during trajectory \mathbf{x} at time t is

$$s^{r}(\mathbf{x}_{r}(t)) = -\ln p_{\mathbf{x}_{r}(t)}(t)$$

- Let $R = \{r, r', ...\}$ be a set of communities (not necessarily a full community structure)
- Define

$$\vec{\sigma}^{R}(\mathbf{x}) = \left(\sigma^{r}(\mathbf{x}), \sigma^{r'}(\mathbf{x}), \ldots\right)$$
$$\sigma^{\cup R}(\mathbf{x}) = \Delta s(\mathbf{x}_{r \cup r' \cup \ldots}) - Q(\mathbf{x}_{r \cup r' \cup \ldots})$$

• "Vector-valued detailed fluctuation theorem" (DFT):

$$\ln \left[\frac{\mathbf{P}(\vec{\sigma}^R)}{\tilde{\mathbf{P}}(-\vec{\sigma}^R)} \right] = \sigma^{\cup R}(\mathbf{x})$$

(with usual definition of $\tilde{\mathbf{P}}(-\vec{\sigma}^R)$ as probability under a reverse protocol)

• Let $R = \{r, r', ...\}$ be a set of communities (not necessarily a full community structure)

$$\ln\left[\frac{\mathbf{P}(\vec{\sigma}^R)}{\tilde{\mathbf{P}}(-\vec{\sigma}^R)}\right] = \sigma^{\cup R}(\mathbf{x})$$

• Subtract this DFT evaluated where *R* is a single community, *r*, from this DFT evaluated where *R* is a full community structure, to get a *conditional IFT*:

$$\langle e^{\sigma^r - \sigma} | \sigma^r \rangle = 1$$

where as before, σ is system-wide EP, and σ^r is EP of community r

This talk

- 1) Trajectory-level thermodynamics of multipartite processes
- 2) First decomposition of system-wide EP in terms of subsystem properties and an information-theoretic property of "red arrow graph"
- 3) Resultant lower bounds on expected EP rate in terms of red arrow graph
- 4) Second decomposition of system-wide EP in terms of subsystem properties and an information-theoretic property of "red arrow graph"
- 5) Resultant "vector" fluctuation theorem in terms of red arrow graph

• For any community r, system-wide EP during trajectory x is

$$\sigma(\mathbf{x}) = \sigma^r(\mathbf{x}) + \Delta s^{X_{-r}|X_r}(\mathbf{x}) - Q^{-r}(\mathbf{x})$$

where

- as before, local EP
$$\sigma^r(\mathbf{x}_r) = \Delta s^r(\mathbf{x}_r) - Q^r(\mathbf{x}_r)$$

-
$$s^{X_{-r}|X_r}(\mathbf{x}(t)) = -\ln(p_{\mathbf{x}(t)}(t)) + \ln(p_{\mathbf{x}_r(t)}(t))$$

$$- Q^{-r}(\mathbf{x}) = \sum_{i \notin r} Q^i(\mathbf{x})$$

$$\sigma(\mathbf{x}) = \sigma^r(\mathbf{x}) + \Delta s^{X_{-r}|X_r}(\mathbf{x}) - Q^{-r}(\mathbf{x})$$

• Take expectation value and differentiate:

$$\langle \dot{\sigma}(t) \rangle = \langle \dot{\sigma}^r(t) \rangle + \langle \dot{\sigma}_{-r}(t) \rangle + \frac{d^r}{dt} S^{X|X_r}(t)$$

$$\langle \dot{\sigma}(t) \rangle = \langle \dot{\sigma}^r(t) \rangle + \langle \dot{\sigma}_{-r}(t) \rangle + \frac{d^r}{dt} S^{X|X_r}(t)$$

- The *local EP rate* is $\langle \dot{\sigma}^r(t) \rangle$
 - > This term is *non-negative*, and *concerns an entire community*
 - The term " σ_X " in (*Sagawa and Shiraishi*, PRE, 2015) can be negative, and does not concern an entire community
 - The term " \dot{S}_i^X " in (*Horowitz and Esposito*, PRX, 2014) is non-negative, but does not concern an entire community
 - The term " σ_{Ω} " in (*Sagawa and Shiraishi*, PRE, 2015) is non-negative, but concerns a subset of possible transitions of global system

$$\langle \dot{\sigma}(t) \rangle = \langle \dot{\sigma}^r(t) \rangle + \langle \dot{\sigma}_{-r}(t) \rangle + \frac{d^r}{dt} S^{X|X_r}(t)$$

$$\circ \quad \langle \dot{\sigma}_{-r}(t) \rangle = \sum_{x,x'} K_x^{x'}(-r;t) p_{x'}(t) \ln \left[\frac{K_x^{x'}(-r;t) p_{x'}(t)}{K_{x'}^{x}(-r;t) p_{x}(t)} \right]$$

is a system-wide EP rate

- just evaluated according to a *counterfactual rate matrix*, $K(-r; t) = \sum_{i \in r} K(i; t)$
- So this term is non-negative

$$\langle \dot{\sigma}(t) \rangle = \langle \dot{\sigma}^r(t) \rangle + \langle \dot{\sigma}_{-r}(t) \rangle + \frac{d^r}{dt} S^{X|X_r}(t)$$

$$\circ \frac{d^r}{dt} S^{X|X_r}(t) = -\sum_{x,x'} K_x^{x'}(r;t) p_{x'}(t) \ln p_{x|x_r}(t)$$

o By data-processing inequality, if r is a community, this term is non-negative

$$\langle \dot{\sigma}(t) \rangle = \langle \dot{\sigma}^r(t) \rangle + \langle \dot{\sigma}_{-r}(t) \rangle + \frac{d^r}{dt} S^{X|X_r}(t)$$

$$\circ \quad \frac{d^r}{dt} S^{X|X_r}(t) = -\sum_{x,x'} K_x^{x'}(r;t) p_{x'}(t) \ln p_{x|x_r}(t)$$

- By data-processing inequality, if r is a community, this term is non-negative
- o If:
 - 1) Two subsystems, where r is one of those subsystems
 - 2) r is a community, i.e., it evolves independently
 - 3) Full system is at an NESS this term equals "learning rate" of (*Barato*, *Hartich*, *Seifert*, NJP, 2014)

$$\langle \dot{\sigma}(t) \rangle = \langle \dot{\sigma}^r(t) \rangle + \langle \dot{\sigma}_{-r}(t) \rangle + \frac{d^r}{dt} S^{X|X_r}(t)$$

$$\circ \frac{d^r}{dt} S^{X|X_r}(t) = -\sum_{x,x'} K_x^{x'}(r;t) p_{x'}(t) \ln p_{x|x_r}(t)$$

- o By data-processing inequality, if r is a community, this term is non-negative
- o If:
 - 1) Two subsystems, where *r* is one of those subsystems
 - 2) Don't require *r* to be a community so lose guarantee of non-negative EP this term equals "information flow" of (*Horowitz*, *Esposito*, PRX, 2014). (See also (*Sagawa*, *Ueda*, NJP, 2013).)

$$\langle \dot{\sigma}(t) \rangle = \langle \dot{\sigma}^r(t) \rangle + \langle \dot{\sigma}_{-r}(t) \rangle + \frac{d^r}{dt} S^{X|X_r}(t)$$

$$\circ \frac{d^r}{dt} S^{X|X_r}(t) = -\sum_{x,x'} K_x^{x'}(r;t) p_{x'}(t) \ln p_{x|x_r}(t)$$

- By data-processing inequality, this term is non-negative
- o If:
 - 1) Two subsystems, where *r* is one of those subsystems
 - 2) Both systems are communities, i.e., they evolve independently
 - 3) One system never changes state this term equals (time-derivative of) "Landauer loss" (*Wolpert, Kolchinsky*, NJP, 2020), aka "modularity dissipation" (*Boyd, Mandal, Crutchfield*, PRX, 2018)

• For any community *r*,

$$\langle \dot{\sigma}(t) \rangle = \langle \dot{\sigma}^r(t) \rangle + \langle \dot{\sigma}_{-r}(t) \rangle + \frac{d^r}{dt} S^{X|X_r}(t)$$

• All three terms on RHS are non-negative. So

$$\langle \dot{\sigma}(t) \rangle \ge \frac{d^r}{dt} S^{X|X_r}(t)$$

• Therefore in the example above,

$$\langle \dot{\sigma}(t) \rangle \ge \max \left[\frac{d^{\omega}}{dt} S^{X|X_{\omega}}(t), \frac{d^{\alpha}}{dt} S^{X|X_{\alpha}}(t), \frac{d^{\omega'}}{dt} S^{X|X_{\omega'}}(t) \right]$$

• For any community r,

$$\langle \dot{\sigma}(t) \rangle = \langle \dot{\sigma}^r(t) \rangle + \langle \dot{\sigma}_{-r}(t) \rangle + \frac{d^r}{dt} S^{X|X_r}(t)$$

- In the example above, ω' is a community within ω .
- So can "iterate" the full decomposition of expected EP rate, by decomposing $\langle \dot{\sigma}^{\omega}(t) \rangle$
- Therefore in the example above,

$$\langle \dot{\sigma}(t) \rangle \ge \frac{d^{\omega}}{dt} S^{X|X_{\omega}}(t) + \frac{d^{\omega'}}{dt} S^{X_{\omega}|X_{\omega'}}(t)$$

This talk

- 1) Trajectory-level thermodynamics of multipartite processes
- 2) First decomposition of system-wide EP in terms of subsystem properties and an information-theoretic property of "red arrow graph"
- 3) Resultant lower bounds on expected EP rate in terms of red arrow graph
- 4) Second decomposition of system-wide EP in terms of subsystem properties and an information-theoretic property of "red arrow graph"
- 5) Resultant "vector" fluctuation theorem in terms of red arrow graph

• System-wide heat flow during trajectory x is

$$Q(\mathbf{x}) = \sum_{i} Q^{i}(\mathbf{x}) = \widehat{\sum_{r}} Q^{r}(\mathbf{x}_{r})$$

where inclusion-exclusion sum ("in-ex sum") is

$$\widehat{\sum_r} Q^r(\mathbf{x}_r) = \sum_r Q^r(\mathbf{x}_r) - \sum_{r < r'} Q^{r \cap r'}(\mathbf{x}_r) + \dots$$

• Therefore **system-wide EP** during trajectory **x** is

$$\sigma(\mathbf{x}) = \Delta s(\mathbf{x}) - Q(\mathbf{x}) = \widehat{\sum_r} \sigma^r(\mathbf{x}) - \Delta I^*(\mathbf{x})$$

where *in-ex information* is

$$I^*(\mathbf{x}(t)) = -s(\mathbf{x}(t)) + \widehat{\sum} s^r(\mathbf{x}(t))$$

Conditional IFT:

$$\langle e^{\sigma^r - \sigma} | \sigma^r \rangle = 1$$

Second expansion of system-wide EP:

$$\sigma(\mathbf{x}) = \widehat{\sum_{r'}} \sigma^{r'}(\mathbf{x}) - \Delta I^*(\mathbf{x})$$

• Combining and applying Jensen's inequality shows that for any community r,

$$\left\langle \widehat{\sum_{r'}} \sigma^{r'} - \Delta I^* \middle| \sigma^r \right\rangle \ge \sigma^r$$

Example (taking r =subsystems 3 and 4):

$$\langle \sigma^{123} - \sigma^3 + \sigma^{34} - \Delta s^{1234} - \Delta s^{123} + \Delta s^3 - \Delta s^{34} \, | \, \sigma^{34} \rangle \ge \sigma^{34}$$

CONCLUSIONS

- Restrictions on dependencies of each subsystem's rate matrix
- Two system-wide decompositions of (trajectory-level) EP in terms of those restrictions
- Nonzero lower bounds on expected system-wide EP rate in terms of those restrictions
 - Extends results on "learning rate", "Landauer loss", (and versions of "second law for feedback control", "second law for information processing", etc.)
- Conditional fluctuation theorems
 - If can observe EP of one subsystem, what is vector of EPs of other subsystems?
- Other lower bounds on expected EP rate, other conditional IFTs, etc.

arXiv:2003.11144, arXiv:2001.02205