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• Four subsystems, {1, 2, 3, 4}

• Red arrows indicate the dependencies of their rate matrices

• N.b., {3} evolves independently, but is observed by {2} and {4}

• So {2} and {4} are not physically coupled, but become statistically coupled with time

Example of a multipartite process
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Example of a multipartite process

How does minimal entropy production (EP) rate depend on red arrow graph?

How are EP fluctuations of the subsystems coupled?

• Four subsystems, {1, 2, 3, 4}

• Red arrows indicate the dependencies of their rate matrices

• N.b., {3} evolves independently, but is observed by {2} and {4}

• So {2} and {4} are not physically coupled, but become statistically coupled with time
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This talk

1) Trajectory-level thermodynamics of multipartite processes

2) First decomposition of system-wide EP in terms of subsystem properties and 

an information-theoretic property of “red arrow graph”

3) Resultant lower bounds on expected EP rate in terms of red arrow graph

4) Second decomposition of system-wide EP in terms of subsystem properties 

and an information-theoretic property of “red arrow graph”

5) Resultant “vector” fluctuation theorem in terms of red arrow graph
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N – set of subsystems

x – joint state of all subsystems

xi(t) – state of subsystem i at time t

Since it’s a multipartite process:
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• A community r is a set of subsystems such that for every i ∈ r,

K(i; t) depends only on other subsystems j ∈ r :

• Dynamics of xr depends only on xr; communities are “self-contained”
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• A community r is a set of subsystems such that for every i ∈ r,

K(i; t) depends only on other subsystems j ∈ r :

• A community structure is a set of communities, closed under intersection, that covers N

w

w’
a

1                        2                        3                          4

x(t)

x(t + dt)



Each subsystem is in contact with its own heat reservoirs:

for all i, k, t where

• r is a community containing subsystem i

• k is a heat reservoir

• Hxr(i; t) is local Hamiltonian of subsystem i

(Can be extended to include particle reservoirs)

Subsystem local detailed balance (SLDB)



Each subsystem is in contact with its own heat reservoirs:

for all i, k, t where

• r is a community containing subsystem i

• k is a heat reservoir

• Hxr(i; t) is local Hamiltonian of subsystem i

(Can be extended to include particle reservoirs)

• Therefore local heat flow into subsystem i during trajectory x is 

where xr(!(j)) is community r’s state at j’th time that subsystem i changes state

Subsystem local detailed balance (SLDB)



• Local heat flow into community r during trajectory x is 

- N.b., heat flow into community r only depends on states of subsystems in r
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• Local EP of community r during trajectory x is

• where as usual the stochastic entropy of community r during trajectory x at time t is
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• Let R = {r, r’, …} be a set of communities (not necessarily a full community structure)

• Define 

• “Vector-valued detailed fluctuation theorem” (DFT):

(with usual definition of                 as probability under a reverse protocol)

w

w’
a

1                        2                        3                          4

x(t)

x(t + dt)



• Let R = {r, r’, …} be a set of communities (not necessarily a full community structure)

• Subtract this DFT evaluated where R is a single community, r, from this DFT evaluated 

where R is a full community structure, to get a conditional IFT:

where as before, ! is system-wide EP, and !r is EP of community r
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This talk

1) Trajectory-level thermodynamics of multipartite processes

2) First decomposition of system-wide EP in terms of subsystem properties 

and an information-theoretic property of “red arrow graph”

3) Resultant lower bounds on expected EP rate in terms of red arrow graph

4) Second decomposition of system-wide EP in terms of subsystem properties 

and an information-theoretic property of “red arrow graph”

5) Resultant “vector” fluctuation theorem in terms of red arrow graph

1                        2                        3                          4

x(t)

x(t + dt)



• For any community r, system-wide EP during trajectory x is

where

- as before, local EP 

-

-
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• Take expectation value and differentiate:



o The local EP rate is             

Ø This term is non-negative, and concerns an entire community

Ø The term “σX” in (Sagawa and Shiraishi, PRE, 2015) can be negative, 

and does not concern an entire community

Ø The term “     ” in (Horowitz and Esposito, PRX, 2014) is non-negative, 

but does not concern an entire community

Ø The term “σΩ” in (Sagawa and Shiraishi, PRE, 2015) is non-negative, 

but concerns a subset of possible transitions of global system



o

is a system-wide EP rate  

- just evaluated according to a counterfactual rate matrix, K(-r; t) = ∑i∉r K(i; t) 

o So this term is non-negative



o

is a derivative of conditional entropy, just according to a counterfactual rate matrix.

o By data-processing inequality, if r is a community, this term is non-negative



o

is a derivative of conditional entropy, just according to a counterfactual rate matrix.

o By data-processing inequality, if r is a community, this term is non-negative

o If:

1) Two subsystems, where r is one of those subsystems 

2) r is a community, i.e., it evolves independently

3) Full system is at an NESS

this term equals “learning rate” of (Barato, Hartich, Seifert, NJP, 2014)



o

is a derivative of conditional entropy, just according to a counterfactual rate matrix.

o By data-processing inequality, if r is a community, this term is non-negative

o If:

1) Two subsystems, where r is one of those subsystems 

2) Don’t require r to be a community – so lose guarantee of non-negative EP

this term equals “information flow” of (Horowitz, Esposito, PRX, 2014). (See also   

(Sagawa, Ueda, NJP, 2013).) 



o

is a derivative of conditional entropy, just according to a counterfactual rate matrix.

o By data-processing inequality, this term is non-negative

o If:

1) Two subsystems, where r is one of those subsystems 

2) Both systems are communities, i.e., they evolve independently

3) One system never changes state

this term equals (time-derivative of) “Landauer loss” (Wolpert, Kolchinsky, NJP, 

2020), aka “modularity dissipation” (Boyd, Mandal, Crutchfield, PRX, 2018)



• For any community r, 

• All three terms on RHS are non-negative. So

• Therefore in the example above,

w

w’
a

1                        2                        3                          4

x(t)

x(t + dt)



• For any community r, 

• In the example above, !’ is a community within !. 

• So can “iterate” the full decomposition of expected EP rate, by decomposing

• Therefore in the example above,
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3) Resultant lower bounds on expected EP rate in terms of red arrow graph
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• System-wide heat flow during trajectory x is 

where inclusion-exclusion sum (“in-ex sum”) is

• Therefore system-wide EP during trajectory x is 

where in-ex information is
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• Conditional IFT:

• Second expansion of system-wide EP:

• Combining and applying Jensen’s inequality shows that for any community r,
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Example (taking r = subsystems 3 and 4):
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CONCLUSIONS

• Restrictions on dependencies of each subsystem’s rate matrix

• Two system-wide decompositions of (trajectory-level) EP in terms of those restrictions

• Nonzero lower bounds on expected system-wide EP rate in terms of those restrictions

- Extends results on “learning rate”, “Landauer loss”, (and versions of “second law for 

feedback control”, “second law for information processing”, etc.)

• Conditional fluctuation theorems

- If can observe EP of one subsystem, what is vector of EPs of other subsystems? 

• Other lower bounds on expected EP rate, other conditional IFTs, etc.
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