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“Entropy.” — “Entropy?” — “Yeah, entropy. Boris explained it.
It's why you can't get the toothpaste back in the tube.”



Outline

o nonequilibrium thermodynamics: phenomenology
o thermodynamic entropy out of equilibrium

@ entropy production as change in thermodynamic entropy



The Nonequilibrium Second Law (Clausius, 1865)

For ease of presentation only one heat
bath.

the concept of entropy production:
(S = thermodynamic entropy!)

0 S ASuniverse
= ASs + ASeny  (weak coupling)

= ASs — /? (ideal bath)

= ASs — $ (weakly perturbed bath, Ty = initial temp.)
0



Quantum-Classical Dictionary

|

classical

‘ quantum

H Hilbert space
p density matrix

H Hamiltonian

Oep = _%[va]
tr{...} | trace operation
S(p) | =—tr{plnp}
MMy projector with

outcome x

Vi rank tr{l,}

phase space I
phase space distribution
Hamiltonian
= {H) p}
phase space integral [drl ...
— [ dTp(T) In[p(T) /A"
characteristic function for a set x:
Me(F) =1if I € x, otherwise 0

volume [ dI'M,(T)/ANd

(today kg = 1)
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Proposal 1

5=35mn(p) = —tr{pIn p}



Proposal 1

5= Sw(p) = —tr{plnp}

Problem

= Slo(B)] =0.




Proposal 2

S= SBoltzmann(X) =In Vi

X — some macroscopic constraint(s)



Proposal 2

S= SBoltzmann(X) =In Vi

X — some macroscopic constraint(s)

Problem (§afrének, Deutsch & Aguirre, arXiv 1905.03841)

1 2 3 4
o little dynamical
H H Slh
information
o typically zero for
small systems time
(VX — tr{nx} — 1) dynamical S,h
time




Proposal 3

Observational entropy

S = Sos(p) = ZPX(_ In py + In V4)

with X = > x[1, some (typically coarse-grained) observable,
px = tr{lxp}, and Vi = tr{ly}.



Proposal 3

Observational entropy

S=5X(p pr In px + In Vy)

with X = > x[1, some (typically coarse-grained) observable,
px = tr{lxp}, and Vi = tr{ly}.

O first introduced by von Neumann (or Wigner?) in Z. Phys. 57, 30 (1929)

@ closely related: “coarse-grained entropy” for classical systems see, e.g., the
Ehrenfests, Begriffliche Grundlagen der statistischen Auffassung in der Mechanik
(1911), Wehrl, Rev. Mod. Phys. 50, 221 (1978); goes back to an idea of Gibbs.

@ recently revived by Safranek, Deutsch & Aguirre, Phys. Rev. A 99, 010101
(2019)




Properties of Observational Entropy (1/2)
Safranek, Deutsch & Aguirre, PRA 99, 012103 (2019)

(1) boundedness

Si(p) < S3bs(p) < Indim H

|

(2) extensivity
FX=X1® --®X,and p=p1 ®--® pp, then

Sos(p) =D S (i)
i=1

l.
|

(3) equivalence

Sgins(P) =Sn(p) & »p= Z pxw(x)  (px arbitrary)

with w(x) = My /V, (generalized microcanonical ensemble).




Properties of Observational Entropy (2/2)
Strasberg & Winter, arXiv 2002.08817

Now consider dynamics

Change of S

[p(t)] with X = X, initial time t = 0.

obs




Properties of Observational Entropy (2/2)
Strasberg & Winter, arXiv 2002.08817

Now consider dynamics

Change of S

[p(t)] with X = X, initial time t = 0.

obs

(4) “second law” (see also Gibbs, Lorentz, Wehrl, Zubarev, ...)

If $2° [p(0)] = Sun[p(0)], then ASX: (t) > 0.

obs obs

(5) fluctuation thm. see also Schmidt, Gemmer, Z Naturforsch A 75 265, 2020

If $32[0(0)] = Sun[p(0)], then

<e_Asc)>?s(t)> = Z p(XhXO)e_ASﬁ)ts(t) =] 1,

Xt,X0
where
p(xt, x0) = tr{M,, U(t)My, p(0)M, U(t)T},
AScfbts(t) = S?bts(t) - s:l(aos(o) =—1In . +In &

Vi, Vi
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Energy measurements

spectral decomposition: H|E;) = E;|E;)

coarse-grained projector: Mg =g = Z |Ei) (E;]
E.c[E,E+9)

measured observable: X = Z EMg— H
£ 6—0

observational entropy: Sis(p) = Z pe(—Inpe + In Vg)
E

equilibrium states: Q = {Zpgw(E)
E

PE arbitrary}

(note: § is a free parameter in theory, assumed to be chosen small
enough, left implicit in the notation)



Heat and _work in isolated systems
Drp(t) = —[HAe), p(1)], p(0) € (o)

standard definition of work

AU(t) = tr{H(Ae)p(t) — H(M)p(0)} = Wie(t) (= 0)



Heat and _work in isolated systems
Drp(t) = —[HAe), p(1)], p(0) € (o)

standard definition of work
AU(t) = tr{H(A:)p(t) = H(X0)p(0)} = Weat(t) (= 0)

how much of this work is recoverable in a macroscopic sense?



Heat and _work in isolated systems
Drp(t) = —4[H(M). (D), p(0) € R(\o)
standard definition of work
AU() = tr{H(A)p(t) — H(20)p(0)} = Wiar(t) (> 0)

how much of this work is recoverable in a macroscopic sense?

—H()\s)/T
Wrec( / T*d obs [ Z()\ ) ‘|

effective nonequilibrium temperature T} (= temperature of a
superbath, which causes vanishing heat exchange)



Heat and .work in isolated systems
9ep(t) = —[H(Ae), p(1)], p(0) € Q(No)
standard definition of work
AU() = tr{H(A)p(t) — H(20)p(0)} = Wiar(t) (> 0)

how much of this work is recoverable in a macroscopic sense?

—H()\s)/T
Wrec( / T*d obs l Z()\ ) ]

effective nonequilibrium temperature T} (= temperature of a
superbath, which causes vanishing heat exchange)

Theorem (reversible process)

Wiee(t) = We(t) & ASE()=0 &  p(t) € QAN

otherwise Qrem(t) = AU(t) — Wiec(t) >0




Entropy production in open systems
Hsg(At) = Hs(At) + Vsg + Hg, pss(0) € ps(0) ® Qg

o chosen observable: X; = S5; ® Eg



Entropy production in open systems
Hsg(At) = Hs(At) + Vsg + Hg, pss(0) € ps(0) ® Qg

o chosen observable: X; = S5; ® Eg
o fluctuation theorem and second law:

< AsobsEB(t)> -1 = ASSt’EB( ) >0

obs



Entropy production in open systems
Hsg(At) = Hs(At) + Vsg + Hg, pss(0) € ps(0) ® Qg

o chosen observable: X; = S5; ® Eg
o fluctuation theorem and second law:
St,E
<e—ASo§s B(f)> -1 = ASEE@ >0

obs

o Clausius inequality with f; Q&..(s)ds = AEp(t):

AB
(t)+/()t Qrem(s) > ASSn

E;
T* obs B(t) > 0
s

ASS

obs



Entropy production in open systems
Hsg(At) = Hs(At) + Vsg + Hg, pss(0) € ps(0) ® Qg

o chosen observable: X; = S5; ® Eg
o fluctuation theorem and second law:

<e—ASf§s’EB(f)> =1 = AS>EE() >0

obs

o Clausius inequality with f; Q&..(s)ds = AEp(t):
f ng(s) S
> A ty
(t) +A Ts* = Sobs
o weakly perturbed bath limit: pg,(t) = pgy(0)[1 + €qe,(t)]
AEg Q

S S
t t o >
ASE(t) + To AS(t) To 0

ASSt Fe(t) >0

obs



Entropy production in open systems
Hsg(At) = Hs(At) + Vsg + Hg, pss(0) € ps(0) ® Qg

chosen observable: X; = S5; ® Eg
fluctuation theorem and second law:

<e—ASf§s’EB<f)> =1 = AS>EE() >0

obs

e o

Clausius inequality with [5 QB (s)ds = AEg(t):
f ng(s) S

> A ty

(t) +A Ts* = Sobs

weakly perturbed bath limit: pg,(t) = peg(0)[1 + eqe,(t)]

AEg Q

S S
t t o >
ASE(t) + To AS(t) To 0

(+]

ASSt Fe(t) >0

obs

(+]

©

depending on the level of control of Hg(\¢):

Wiot — AFE }

= >
Qrem(t) { V‘/tot _ AFgoneq 0'
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Summary (Strasberg & Winter, arXiv 2002.08817)
see also Strasberg, arXiv 1906.09933

Observational entropy...

o ...seems to be a good candidate for thermodynamic entropy
out of equilibrium (compare also with Safranek, Deutsch & Aguirre)

o ...provides a consistent derivation of the second law for open

systems (“the thermodynamic entropy of the universe never decreases!”)

Qo ...provides an extremely flexible tool (one or multiple bath, beyond

Gibbs states, including a large class of correlated states, etc.)
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