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“Entropy.” — “Entropy?” — “Yeah, entropy. Boris explained it.
It's why you can't get the toothpaste back in the tube.”



Outline

@ nonequilibrium thermodynamics: phenomenology
o thermodynamic entropy out of equilibrium

@ entropy production as change in thermodynamic entropy



The Nonequilibrium Second Law (Clausius, 1865)

For ease of presentation only one heat
bath.

the concept of entropy production:
(S = thermodynamic entropy!)

0 S ASuniverse
= ASs + ASeny  (weak coupling)

= ASs — /? (ideal bath)

= ASs — % (weakly perturbed bath, Ty = initial temp.)
0



Quantum-Classical Dictionary

|

classical

‘ quantum

H Hilbert space
p density matrix

H Hamiltonian

Oep = _%[va]
tr{...} | trace operation
S(p) | =—tr{plnp}
MMy projector with

outcome x

Vi rank tr{ly}

phase space I
phase space distribution
Hamiltonian
= {H) p}
phase space integral [drl ...
— [ dTp(T) In[p(T) /A"
characteristic function for a set x:
Me(F) =1if I € x, otherwise 0

volume [ dI'M,(T)/ANd

(today kg = 1)
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Proposal 1

5=35n(p) = —tr{pInp}



Proposal 1

5= Sm(p) = —tr{pInp}

Problem

& Salp(t)] = 0.




Proposal 2

S= SBoltzmann(X) =In Vi

X — some macroscopic constraint(s)



Proposal 2

S= SBoItzmann(X) =In Vi

X — some macroscopic constraint(s)

Problem (§afrének, Deutsch & Aguirre, arXiv 1905.03841)

1 2 3 4
o little dynamical
. . Sin
information
o typically zero for
small systems time
(VX = tr{nx} = 1) dynamical Sth
time




Proposal 3

Observational entropy

S = Sos(p) = ZPX(_ In py + In V4)

with X = > x[, some (typically coarse-grained) observable,
px = tr{lxp}, and V, = tr{ly}.



Proposal 3

Observational entropy

S=5X(p pr In px + In Vy)

with X = > x[, some (typically coarse-grained) observable,
px = tr{lxp}, and V, = tr{ly}.

@ first introduced by von Neumann (or Wigner?) in Z. Phys. 57, 30 (1929)

@ closely related: “coarse-grained entropy” for classical systems see, e.g., the
Ehrenfests, Begriffliche Grundlagen der statistischen Auffassung in der Mechanik
(1911), Wehrl, Rev. Mod. Phys. 50, 221 (1978); goes back to an idea of Gibbs.

@ recently revived by Safranek, Deutsch & Aguirre, Phys. Rev. A 99, 010101
(2019)




Properties of Observational Entropy (1/2)
Safranek, Deutsch & Aguirre, PRA 99, 012103 (2019)

(1) boundedness

Si(p) < S3bs(p) < Indim H

|

(2) extensivity
FX=X1® --®X,and p=p1 ®---® pp, then

Sos(p) = > S (i)
i=1

l.
|

(3) equivalence

Shs(P) = S(p) & p=>_ puw(x) (px arbitrary)

with w(x) = My/V, (generalized microcanonical ensemble).




Properties of Observational Entropy (2/2)
Strasberg & Winter, arXiv 2002.08817

Now consider dynamics

Change of St

[p(t)] with X = X, initial time t = 0.

obs




Properties of Observational Entropy (2/2)
Strasberg & Winter, arXiv 2002.08817

Now consider dynamics

Change of St [p(t)] with X = X, initial time t = 0.

obs

(4) “second law" (see also Gibbs, Lorentz, Wehrl, Zubarev, ...)

If S321p(0)] = Sun[p(0)], then ASJE(¢) > 0.

obs

y

(5) fluctuation thm. see also Schmidt, Gemmer, Z Naturforsch A 75 265, 2020
If S38,[0(0)] = Sun[p(0)], then
<e—As:§s(t)> _ Z p(XhXO)e—Asgffs(t) =1,

Xt,X0
where
p(xe, x0) = tr{Mx U(£)M,p(0) U(1) '},
A (t) = spe(t) — s22.(0) = —In ’\’/Xf L inPe

Vi

t
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Energy measurements

spectral decomposition: H|E;) = E;|E;)

coarse-grained projector: Mg =g = Z |Ei) (E;]
Eic[E.E+0)

measured observable: X = Z ENg— H
£ 6—0

observational entropy: Sis(p) = Z pe(—Inpe + In Vg)
E

equilibrium states: Q = {Zpgw(E)
E

PE arbitrary}

(note: § is a free parameter in theory, assumed to be chosen small
enough, left implicit in the notation)



Heat and _work in isolated systems
Drp(t) = —[HOAe), p(1)], p(0) € (o)

standard definition of work

AU(t) = tr{H(Ae)p(t) — H(M0)p(0)} = Wier(t) (= 0)



Heat and _work in isolated systems
Drp(t) = —[HOAe), p(1)], p(0) € (o)

standard definition of work
AU(t) = tr{H(A:e)p(t) — H(X0)p(0)} = Weat(t) (= 0)

how much of this work is recoverable in a macroscopic sense?



Heat and _work in isolated systems
Drp(t) = —4[H(M). p(D)]. p(0) € R(\o)
standard definition of work
AU(t) = tr{H(A)p(t) — H(Xo)p(0)} = Wiee(t) (= 0)

how much of this work is recoverable in a macroscopic sense?

—H()\s)/T
Wrec( / T*d obs [ Z()\ ) ‘|

effective nonequilibrium temperature T (= temperature of a
superbath, which causes vanishing heat exchange)



Heat and .work in isolated systems
9ep(t) = —[H(Ae), p(2)], p(0) € Q(No)
standard definition of work
AU(E) = tr{H(A)p(t) — H(20)p(0)} = Wiar(t) (> 0)

how much of this work is recoverable in a macroscopic sense?

—H()\s)/T
Wrec( / T*d obs [ Z()\ ) ]

effective nonequilibrium temperature T} (= temperature of a
superbath, which causes vanishing heat exchange)

Theorem (reversible process)

Wiee(t) = We(t) & ASE()=0 &  p(t) € QAN

otherwise Qrem(t) = AU(t) — Wiec(t) >0




Entropy production in open systems
Hsg(At) = Hs(At) + Vsg + Hg, pss(0) € ps(0) ® Qg

o chosen observable: X; = S5; ® Eg



Entropy production in open systems
Hsg(At) = Hs(At) + Vsg + Hp, pss(0) € ps(0) @ Qp

o chosen observable: X; = S5; ® Eg
o fluctuation theorem and second law:

< AsobsEB(t)> -1 = ASSt’EB( ) >0

obs



Entropy production in open systems
Hsg(At) = Hs(At) + Vsg + Hp, pss(0) € ps(0) @ Qp

o chosen observable: X; = S5; ® Eg
o fluctuation theorem and second law:
St,E
<e—ASo§s B<f)> -1 = AsEE@ >0

obs

o Clausius inequality with f; Q&..(s)ds = AEp(t):

AB
(t)+/()t Qrem(s) > ASSn

E,
T* obs B(t) > 0
s

AS3

obs



Entropy production in open systems
Hsg(At) = Hs(At) + Vsg + Hp, pss(0) € ps(0) @ Qp
o chosen observable: X; = S5; ® Eg

o fluctuation theorem and second law:

<e—ASf§s’EB<f)> =1 = AS>EE() >0

obs

o Clausius inequality with f; Q&..(s)ds = AEp(t):
f ng(s) S
> A ty
(t) +A Ts* = Sobs
o weakly perturbed bath limit: pg,(t) = pg,(0)[1 + €qe,(t)]
AEg Q

S S
t t _ X >
ASE(t) + To AS(t) To 0

ASSt Fe(t) >0

obs



Entropy production in open systems
Hsg(At) = Hs(At) + Vsg + Hp, pss(0) € ps(0) @ Qp

chosen observable: X; = S5; ® Eg
fluctuation theorem and second law:

<e—ASf§s’EB<f)> =1 = AS>EE() >0

obs

© ©

Clausius inequality with [5 QB (s)ds = AEg(t):
£ Qrm(s) s
t rem > A ty
( )+A Ts* = Sobs
weakly perturbed bath limit: pg,(t) = peg(0)[1 + eqe,(t)]

AEg Q

S S
t t _ X >
ASE(t) + To AS(t) To 0

(+]

ASSt Fe(t) >0

obs

(~]

©

depending on the level of control of Hg(\¢):

Wit — AFE }

= >
Qrem(t) { V‘/tot _ AFgoneq 0'
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Summary (Strasberg & Winter, arXiv 2002.08817)
see also Strasberg, arXiv 1906.09933

Observational entropy...

o ...seems to be a good candidate for thermodynamic entropy
out of equilibrium (compare also with Safranek, Deutsch & Aguirre)

o ...provides a consistent derivation of the second law for open

systems (“the thermodynamic entropy of the universe never decreases!”)

[+ ...provides an extremely flexible tool (one or multiple bath, beyond

Gibbs states, including a large class of correlated states, etc.)
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