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“Entropy.” — “Entropy?” — “Yeah, entropy. Boris explained it.

It’s why you can’t get the toothpaste back in the tube.”



Outline

nonequilibrium thermodynamics: phenomenology

thermodynamic entropy out of equilibrium

entropy production as change in thermodynamic entropy



The Nonequilibrium Second Law (Clausius, 1865)

⇝
⇝

⇝

Today

For ease of presentation only one heat
bath.

the concept of entropy production:
(S = thermodynamic entropy!)

0 ≤ ∆Suniverse

= ∆SS + ∆Senv (weak coupling)

= ∆SS −

∫

d̄Q

T
(ideal bath)

= ∆SS −
Q

T0
(weakly perturbed bath, T0 = initial temp.)



Quantum-Classical Dictionary

quantum classical

H Hilbert space phase space Γ

ρ density matrix phase space distribution

H Hamiltonian Hamiltonian

∂tρ = − i
~
[H, ρ] = {H, ρ}

tr{. . . } trace operation phase space integral
∫

dΓ . . .

SvN(ρ) = −tr{ρ ln ρ} = −
∫

dΓρ(Γ) ln[ρ(Γ)/hNd ]

Πx projector with characteristic function for a set x :
outcome x Πx (Γ) = 1 if Γ ∈ x , otherwise 0

Vx rank tr{Πx} volume
∫

dΓΠx (Γ)/hNd

(today kB ≡ 1)
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Proposal 1

S = SvN(ρ) = −tr{ρ ln ρ}



Proposal 1

S = SvN(ρ) = −tr{ρ ln ρ}

Problem

d

dt
SvN[ρ(t)] = 0.



Proposal 2

S = SBoltzmann(x) = ln Vx

x – some macroscopic constraint(s)



Proposal 2

S = SBoltzmann(x) = ln Vx

x – some macroscopic constraint(s)

Problem (S̆afránek, Deutsch & Aguirre, arXiv 1905.03841)

little dynamical
information

typically zero for
small systems
(Vx = tr{Πx } = 1)



Proposal 3

Observational entropy

S = SX
obs(ρ) =

∑

x

px (− ln px + ln Vx )

with X =
∑

x xΠx some (typically coarse-grained) observable,
px = tr{Πxρ}, and Vx = tr{Πx}.



Proposal 3

Observational entropy

S = SX
obs(ρ) =

∑

x

px (− ln px + ln Vx )

with X =
∑

x xΠx some (typically coarse-grained) observable,
px = tr{Πxρ}, and Vx = tr{Πx}.

History

first introduced by von Neumann (or Wigner?) in Z. Phys. 57, 30 (1929)

closely related: “coarse-grained entropy” for classical systems see, e.g., the
Ehrenfests, Begriffliche Grundlagen der statistischen Auffassung in der Mechanik

(1911), Wehrl, Rev. Mod. Phys. 50, 221 (1978); goes back to an idea of Gibbs.

recently revived by S̆afránek, Deutsch & Aguirre, Phys. Rev. A 99, 010101
(2019)



Properties of Observational Entropy (1/2)
S̆afránek, Deutsch & Aguirre, PRA 99, 012103 (2019)

(1) boundedness

SvN(ρ) ≤ SX
obs(ρ) ≤ ln dim H

(2) extensivity

If X = X1 ⊗ · · · ⊗ Xn and ρ = ρ1 ⊗ · · · ⊗ ρn, then

SX
obs(ρ) =

n
∑

i=1

SXi

obs(ρi).

(3) equivalence

SX
obs(ρ) = SvN(ρ) ⇔ ρ =

∑

x

pxω(x) (px arbitrary)

with ω(x) ≡ Πx/Vx (generalized microcanonical ensemble).



Properties of Observational Entropy (2/2)
Strasberg & Winter, arXiv 2002.08817

Now consider dynamics

Change of SXt

obs[ρ(t)] with X = Xt , initial time t = 0.



Properties of Observational Entropy (2/2)
Strasberg & Winter, arXiv 2002.08817

Now consider dynamics

Change of SXt

obs[ρ(t)] with X = Xt , initial time t = 0.

(4) “second law” (see also Gibbs, Lorentz, Wehrl, Zubarev, ...)

If SX0
obs[ρ(0)] = SvN[ρ(0)], then ∆SXt

obs(t) ≥ 0.

(5) fluctuation thm. see also Schmidt, Gemmer, Z Naturforsch A 75 265, 2020

If SX0
obs[ρ(0)] = SvN[ρ(0)], then

〈

e−∆s
Xt
obs

(t)
〉

=
∑

xt ,x0

p(xt , x0)e−∆s
Xt
obs

(t) = 1,

where
p(xt , x0) = tr{Πxt

U(t)Πx0
ρ(0)Πx0

U(t)†},

∆sXt

obs(t) = sXt

obs(t) − sX0

obs(0) = − ln
pxt

Vxt

+ ln
px0

Vx0

.
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Energy measurements

spectral decomposition: H|Ei〉 = Ei |Ei〉

coarse-grained projector: ΠE = ΠE ,δ =
∑

Ei ∈[E ,E+δ)

|Ei〉〈Ei |

measured observable: X =
∑

E

EΠE −→
δ→0

H

observational entropy: SE
obs(ρ) =

∑

E

pE (− ln pE + ln VE )

equilibrium states: Ω =

{

∑

E

pE ω(E )

∣

∣

∣

∣

∣

pE arbitrary

}

(note: δ is a free parameter in theory, assumed to be chosen small

enough, left implicit in the notation)



Heat and work in isolated systems
∂tρ(t) = − i

~
[H(λt), ρ(t)], ρ(0) ∈ Ω(λ0)

standard definition of work

∆U(t) = tr{H(λt)ρ(t) − H(λ0)ρ(0)} ≡ Wtot(t) (≥ 0)
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effective nonequilibrium temperature T ∗

s (≡ temperature of a
superbath, which causes vanishing heat exchange)
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∂tρ(t) = − i

~
[H(λt), ρ(t)], ρ(0) ∈ Ω(λ0)

standard definition of work

∆U(t) = tr{H(λt)ρ(t) − H(λ0)ρ(0)} ≡ Wtot(t) (≥ 0)

how much of this work is recoverable in a macroscopic sense?

Wrec(t) ≡ ∆U(t) −

∫ t

0
T ∗

s dSE
obs

[

e−H(λs)/T ∗

s

Z (λs)

]

effective nonequilibrium temperature T ∗

s (≡ temperature of a
superbath, which causes vanishing heat exchange)

Theorem (reversible process)

Wrec(t) = Wtot(t) ⇔ ∆SEt

obs(t) = 0 ⇔ ρ(t) ∈ Ω(λt)

otherwise Qrem(t) ≡ ∆U(t) − Wrec(t) > 0



Entropy production in open systems
HSB(λt) = HS(λt) + VSB + HB, ρSB(0) ∈ ρS(0) ⊗ ΩB

chosen observable: Xt = St ⊗ EB
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Entropy production in open systems
HSB(λt) = HS(λt) + VSB + HB, ρSB(0) ∈ ρS(0) ⊗ ΩB

chosen observable: Xt = St ⊗ EB

fluctuation theorem and second law:
〈

e−∆s
St ,EB
obs

(t)
〉

= 1 ⇒ ∆S
St ,EB

obs (t) ≥ 0

Clausius inequality with
∫ t

0 Q̇B
rem(s)ds = ∆EB(t):

∆SSt

obs(t) +

∫ t

0

Q̇B
rem(s)

T ∗
s

≥ ∆S
St ,EB

obs (t) ≥ 0

weakly perturbed bath limit: pEB
(t) = pEB

(0)[1 + ǫqEB
(t)]

∆SSt

obs(t) +
∆EB

T0
= ∆SSt

obs(t) −
Q

T0
≥ 0

depending on the level of control of HS(λt):

Qrem(t) =

{

Wtot − ∆F
eq
S

Wtot − ∆F
noneq
S

}

≥ 0.
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Summary (Strasberg & Winter, arXiv 2002.08817)
see also Strasberg, arXiv 1906.09933

Observational entropy...

...seems to be a good candidate for thermodynamic entropy
out of equilibrium (compare also with S̆afránek, Deutsch & Aguirre)

...provides a consistent derivation of the second law for open
systems (“the thermodynamic entropy of the universe never decreases!”)

...provides an extremely flexible tool (one or multiple bath, beyond

Gibbs states, including a large class of correlated states, etc.)
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