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Thermodynamic uncertainty relation (TUR)

B Relation between fluctuation and entropy production [Barato & Seifert, PRL,

2015]
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where Is entropy production.

B Recently, quantum TURSs have been studied

B [Erker et al, PRX, 2017], [Brandner et al, PRL, 2018], [Carollo et al, PRL, 2018],
[Liu et al, PRE, 2019], [Guarnieri et al, PRR, 2019], [Saryal et al, PRE, 2019], etc

B Still, quantum TURSs are In a very early stage
B Many studies obtained case-by-case bounds

B | will present a quantum TUR valid for general open quantum dynamics



TUR In open quantum systems
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TUR In open quantum systems
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Environment basis: {|0),[1,...,|] — 1}
H \\/e assume that

0)=0
B As long as this condition is met, ( ) can return any real number

B The initial state of was assumed to be |0). Therefore, when the state of
the environment after the interaction is |0), the environment remains
unchanged before and after the interaction.



TUR In open guantum systems

B Then we find the following bound for the coefficient of variation of
()
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B = corresponds to the dynamical activity in classical Markov processes
B This relation holds for

M any open guantum systems as long as OT 0>0
M any observable ( )with (0)=0
M any initial density operator In




Application: continuous measurement

B Consider a Lindblad equation defined by _
1
—=-1.1+ = B

where IS a jJump operator.

B The Lindblad equation renders the dynamics when we do not measure
the environment.

B On measuring the environment, the Lindblad equation Is unraveled to
yield a stochastic dynamics conditioned on a measurement record

B Stochastic trajectory Is described by a stochastic Schrodinger equation



Quantum trajectory
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Continuous measurement

B The interval [0, ] Isdivided into equipartitioned intervals
B The environmental orthonormal basisis| _4,..., o)

M| )interacts with within the time interval [ , 1] viaa unitary
operator




TUR for continuous measurement

B One-step time evolution is

( + A ) — ( ) T i Kraus representation

where

- A A " (radeteytion

\
= "4 JA (det eoffi'onent

B Because o = (0] |O) corresponds to “no jump events” during [0, |,
itisgivenby o= 1| 1 m
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TUR for continuous measurement

B , can be computed via Trotter product formula as follows
T
20 )

_ = ( +lo
0=
Therefore, a quantum TUR becomes
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B This relation holds for anyLindblad dynamics (time-independent
and ) and for any initial density operator
B — reduces to the dynamical activity in classical Markov processes In a
particular limit



Effect of quantumness

B \When we emulate classical Markov processes with the Lindblad equation,
| o ] = 0 holds. In this case, = reduces to

;
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B \\WVhen 1, we have

1
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B \When > 0, the system gains a precision enhancement due to the
guantumness.

M For a particular model, corresponds to non-diagonal elements in density
operators



Effect of measurement

B The Lindblad equation is invariant under the following transformation,

— _ _ T i i
R 5 ( ), - + where isan arbitrary complex
parameter.
B Unravelling with different corresponds to different continuous
measurement
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Effect of measurement

B Under this transformation, Elis .
== [ (#27+ ) (+37+ T)]_4

W Therefore, for | | >0, = |17
B The lower bound of the qguantum TUR can be arbitrary small by
employing a continuous measurement with large | |

B Measurements can be a thermodynamics resource. It Is possible to
extract work from single reservoir without feedback [Yi et al, PRE,
2017].



Classical limit and dynamical activity

B For classical Markov processes with transition rate
with the initial probability distribution
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B This relation holds for any time-dependent Markov chains
1, we have

()
.
which is the dynamical activity in classical Markov processes
B Dynamical activit Ela%/s
[Shiraishi et al, PRL, 20

Important roles in classical Markov processes
18], [Garrahan, PRE, 2017]



Numerical verifications
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Numerical verifications
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Quantum Cramér-Rao inequality

B Bound on statistical estimator in quantum systems

1
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Quantum Cramer-Rao bound

B Quantum Crameér-Rao bound has been applied to obtain guantum
uncertainty relations

B Robertson uncertainty relation, Quantum speed limit

B Classical Cramér-Rao inequality has been applied to obtain classical
thermodynamic uncertainty relations

M [Hasegawa et al, PRE, 2019], [Dechant, JPA, 2019], [Ito et al PRX, In press]

M |t IS much harder to find quantum Fisher information than in classical
cases



Quantum Fisher information

B Quantum Fisher information Is
()=max (; )
where IS POVM and IS a classical Fisher information

B Therefore, quantum Crameér-Rao inequality is satisfied for any
gquantum measurements (POVMs)

B Quantum Fisher information is calculated by
()=T¢F ? ]

where Is known as symmetric logarithm derivative.

M In general, 1s difficult to obtain



Quantum Fisher information

M [Escher et al Nat. Phys., 2011] showed that qguantum Fisher information is
upper bounded by
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Derivation

B To derive the main result, we consider the following parametrization
()= "2 (1= < -1

W \\e cannot freely parametrigci o( ) due to the completeness relation

() ()=
=0
B Any o( ) satisfying the completeness relation can be represented by
-1 -1
()= |- () ()= |- *
V =1 V =1

where IS a unitary operator.



Derivation

B Using these parametrlzatlon QFI i1s upper bounded by

(=0s([(do)])-1

B \We next evaluate ( ( )) inquantum Cramér-Rao inequality

B Since we have assumed that (0) = 0, a complicated scaling
dependence of o( ) on can be |gnored
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Derivation

B Substituting into these equality to the guantum Cramer-Rao inequality,

we obtain the main result
Valr( )] 1
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B The main result also holds for any initial mixed states through the
purification
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Conclusion

B TUR In open guantum systems Is obtained

B Quantum dynamics = Joint unitary evolution on principal and environment
systems

B Observable = Projective measurement on the environment
B Thermodynamic cost = Quantum analogue of dynamical activity

B Effects of quantumness on precision
B Measurements improve the precision
B Non-commutativeness improves the precision



Questions?



Quantum walk

B The quantum walk Is defined on the chirality space spanned by
{I )| }and the position space spanned by {| }

B One step evolution Is operated via a unitary operator

- ( ) Hadamard

DI+ =X = B

where

V2
[T T+l | [ =D



Quantum walk

to =0 (5] to tg =1
Chirality space ¢ |R)

100



Quantum walk

B The amplitudes after steps were known
B Therefore, dynamical (activity = afte_r2 steps can be calculated analytically

22+1() -1 even
2

where = >

B By using Stirling approximation,



Quantum walk

B — linearly depends on the number of steps.

B This Is In contrast to the classical case where Z exponentially depends
on time



