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Thermodynamic uncertainty relation (TUR)

 Relation between fluctuation and entropy production [Barato & Seifert, PRL, 
2015]
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where 𝜎is entropy production.

 Recently, quantum TURs have been studied

 [Erker et al., PRX, 2017], [Brandner et al., PRL, 2018], [Carollo et al., PRL, 2018], 
[Liu et al., PRE, 2019], [Guarnieri et al., PRR, 2019], [Saryal et al., PRE, 2019], etc

 Still, quantum TURs are in a very early stage

 Many studies obtained case-by-case bounds

 I will present a quantum TUR valid for general open quantum dynamics



TUR in open quantum systems
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TUR in open quantum systems
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 We assume that
𝑔0 =0

 As long as this condition is met, 𝑔(𝑚)can return any real number

 The initial state of 𝐸was assumed to be 0. Therefore, when the state of 
the environment after the interaction is 0, the environment remains 
unchanged before and after the interaction. 

Environment basis: |0,|1⟩,…,|𝑀−1⟩}

𝑡=0 𝑡=𝑇



TUR in open quantum systems

Then we find the following bound for the coefficient of variation of 
𝑔(𝑚):

Var𝑔𝑚

𝑔𝑚 2
≥

1

Ξ

Ξ=Tr𝑆 𝑉0
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Ξcorresponds to the dynamical activity in classical Markov processes

This relation holds for

 any open quantum systems as long as 𝑉0
†𝑉0>0

 any observable 𝑔(𝑚)with 𝑔0 =0
 any initial density operator 𝜌in 𝑆

𝑉0≡ 0𝑈0



Application: continuous measurement

Consider a Lindblad equation defined by
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where 𝐿𝑐is a jump operator. 

The Lindblad equation renders the dynamics when we do notmeasure 
the environment. 

On measuring the environment, the Lindblad equation is unraveled to 
yield a stochastic dynamics conditioned on a measurement record

 Stochastic trajectory is described by a stochastic Schrödinger equation



Quantum trajectory
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This dynamics is a solution of the 
Lindblad equation



Continuous measurement

The interval [0,𝑇]is divided into 𝑁equipartitioned intervals

The environmental orthonormal basis is 𝑚𝑁−1,…,𝑚0

 𝑚𝑘 interacts with 𝑆within the time interval [𝑡𝑘,𝑡𝑘+1]via a unitary 
operator 𝑈𝑡𝑘



TUR for continuous measurement

One-step time evolution is
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Because 𝑉0≡ 0𝑈0 corresponds to “no jump events” during 0,𝑇, 
it is given by 𝑉0= lim

𝑁→∞
𝑋0

𝑁

Kraus representation



TUR for continuous measurement

𝑉0can be computed via Trotter product formula as follows
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Therefore, a quantum TUR becomes
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 This relation holds for any Lindblad dynamics (time-independent 𝐻
and 𝐿𝑐) and for any initial density operator

Ξreduces to the dynamical activity in classical Markov processes in a 
particular limit



Effect of quantumness

 When we emulate classical Markov processes with the Lindblad equation, 
𝐻,σ𝑐𝐿𝑐

†𝐿𝑐 =0holds. In this case, Ξreduces to

ΞCL=Tr𝑆 𝑒𝑇σ𝑐𝐿𝑐
†𝐿𝑐

 When 𝑇≪ 1, we have

Ξ=ΞCL+
1

2
𝑇2𝜒+𝑂𝑇3

where 𝜒≡𝑖σ𝑐Tr𝑆 𝐻,𝐿𝑐
†𝐿𝑐𝜌. 

 When 𝜒>0, the system gains a precision enhancement due to the 
quantumness. 

 For a particular model, 𝜒corresponds to non-diagonal elements in density 
operators



Effect of measurement

The Lindblad equation is invariant under the following transformation, 

𝐻→𝐻−
𝑖

2
𝜁∗𝐿−𝜁𝐿† , 𝐿→𝐿+𝜁where 𝜁is an arbitrary complex 

parameter.

Unravelling with different 𝜁corresponds to different continuous 
measurement

𝜁=0 𝜁=1

Both quantum trajectories 
reduce to the same dynamics 

on average



Effect of measurement

Under this transformation, Ξis

Ξ=e𝜁2𝑇Tr𝑆𝑒
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Therefore, for 𝜁→∞, Ξ∼𝑒𝜁2𝑇

The lower bound of the quantum TUR can be arbitrary small by 
employing a continuous measurement with large |𝜁|

Measurements can be a thermodynamics resource. It is possible to 
extract work from single reservoir without feedback [Yi et al., PRE, 
2017]. 



Classical limit and dynamical activity

 For classical Markov processes with transition rate 𝛾𝑗𝑖(𝑡)(from 𝑖to 𝑗)
with the initial probability distribution 𝑃𝑖, Ξbecomes

Var[𝑔(𝑚)]
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 This relation holds for any time-dependent Markov chains

 For 𝑇≪ 1, we have

Ξ≃𝑇෍

𝑖

෍

𝑗≠𝑖

𝑃𝑖𝛾𝑗𝑖(𝑡)

which is the dynamical activity in classical Markov processes

 Dynamical activity plays important roles in classical Markov processes 
[Shiraishi et al., PRL, 2018], [Garrahan, PRE, 2017]



Numerical verifications

Random quantum channel 
and random 𝑔(𝑚)

Continuous measurement in 
two-level atom driven by 

laser field. Observable is the 
number of emitted photon. 

The same as (b). Ξis 
replaced with Ξ𝐶𝐿. 

Quantum walk and random 
𝑔(𝑚)



Numerical verifications

Random quantum channel 
and random 𝑔(𝑚)

Continuous measurement in 
two-level atom driven by 

laser field. Observable is the 
number of emitted photon. 

The same as (b). Ξis 
replaced with Ξ𝐶𝐿. 

Quantum walk and random 
𝑔(𝑚)

Points lower than 1/ΞCLis a signature of 
precision enhancement due to 

quantumness. 



Quantum Cramér-Rao inequality

Bound on statistical estimator in quantum systems
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Quantum Cramér-Rao bound

Quantum Cramér-Rao bound has been applied to obtain quantum 
uncertainty relations

Robertson uncertainty relation, Quantum speed limit

Classical Cramér-Rao inequality has been applied to obtain classical 
thermodynamic uncertainty relations

 [Hasegawa et al., PRE, 2019], [Dechant, JPA, 2019], [Ito et al. PRX, in press]

 It is much harder to find quantum Fisher information than in classical 
cases



Quantum Fisher information

Quantum Fisher information is 
ℱ𝑄 𝜃 =max

ℳ
ℱ𝐶(𝜃;ℳ )

where ℳ is POVM and ℱ𝐶is a classical Fisher information

Therefore, quantum Cramér-Rao inequality is satisfied for any 
quantum measurements (POVMs)

Quantum Fisher information is calculated by
ℱ𝑄 𝜃 =Tr[ℒ2𝜌]

where ℒis known as symmetric logarithm derivative. 

 In general, ℒis difficult to obtain



Quantum Fisher information

 [Escher et al, Nat. Phys., 2011] showed that quantum Fisher information is 
upper bounded by

ℱ𝑄 𝜃 ≤4 𝜓𝐻1 𝜃 𝜓 − 𝜓𝐻2 𝜃 𝜓2
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Derivation

 To derive the main result, we consider the following parametrization
𝑉𝑚 𝜃 =𝑒𝜃/2𝑉𝑚 (1≤𝑚≤𝑀−1)

 We cannot freely parametrize 𝑉0(𝜃)due to the completeness relation
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† 𝜃𝑉𝑚(𝜃)=𝕀
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where 𝑌is a unitary operator. 



Derivation

 Using these parametrization, QFI is upper bounded by

ℱ𝑄 𝜃=0 ≤ 𝜓 𝑉0
†𝑉0

−1
𝜓 −1

 We next evaluate 𝜕𝜃 𝑔𝑚 𝜃in quantum Cramér-Rao inequality

 Since we have assumed that 𝑔(0)=0, a complicated scaling
dependence of 𝑉0(𝜃)on 𝜃can be ignored
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Derivation

Substituting into these equality to the quantum Cramér-Rao inequality, 
we obtain the main result
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The main result also holds for any initial mixed states 𝜌through the 
purification
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Conclusion

TUR in open quantum systems is obtained

Quantum dynamics = Joint unitary evolution on principal and environment 
systems

Observable = Projective measurement on the environment

Thermodynamic cost = Quantum analogue of dynamical activity

Effects of quantumness on precision

Measurements improve the precision

Non-commutativeness improves the precision



Questions?



Quantum walk

The quantum walk is defined on the chirality space spanned by 
|𝑅,|𝐿⟩}and the position space spanned by {|𝑛⟩}

One step evolution is operated via a unitary operator
𝒰=𝒮𝒞⊗ 𝕀𝐸

where 

𝒞≡
𝑅 𝑅 + 𝑅 𝐿+ 𝐿 𝑅 − 𝐿 𝐿

2
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|𝑅 𝑅 ⊗ 𝑛+1 𝑛+|𝐿⟩⟨𝐿|⊗ 𝑛−1 𝑛|

Hadamard
gate



Quantum walk

Chirality space

Position space



Quantum walk

 The amplitudes after 𝑡steps were known 

 Therefore, dynamical activity Ξafter 𝑡steps can be calculated analytically

Ξ=

22𝑢+1
𝑢
𝑢
2
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22𝑢−1
𝑢−1
𝑢−1

2

−2

−1 𝑢∈odd

where 𝑢≡
𝑡

2

 By using Stirling approximation, 
Ξ∼𝜋𝑢



Quantum walk

Ξlinearly depends on the number of steps. 

This is in contrast to the classical case where Ξ exponentially depends 
on time


