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Thermodynamic uncertainty relation (TUR)

B Relation between fluctuation and entropy production [Barato & Seifert, PRL,

2015]
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where o 1s entropy production.

B Recently, quantum TURs have been studied

B [Erker er al., PRX, 2017], [Brandner et al., PRL, 2018], [Carollo et al., PRL, 2018],
Liu et al., PRE, 2019], [Guarnieri et al., PRR, 2019], [Saryal et al., PRE, 2019], etc

B Still, quantum TURSs are 1n a very early stage
B Many studies obtained case-by-case bounds

B [ will present a quantum TUR valid for general open quantum dynamics



TUR In open quantum systems
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TUR In open quantum systems
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Environment basis: {|0), |1), ..., |[M — 1)}
B We assume that

g(0) =0
B As long as this condition is met, g(m) can return any real number

B The initial state of E was assumed to be |0). Therefore, when the state of
the environment after the interaction is |0), the environment remains
unchanged before and after the interaction.



TUR In open quantum systems

B Then we find the following bound for the coefficient of variation of

gam); Varlg(m)] _ 1

(g(m))2 T E

E = Trg [(VJVO)_lp] -1 Vo=(0lU]o)

B = corresponds to the dynamical activity in classical Markov processes

B This relation holds for

B any open quantum systems as long as VOJr Vo >0
M any observable g(m) with g(0) =0
B any initial density operator p in S



Application: continuous measurement

B Consider a Lindblad equation defined by _
ap . p Loy -
ar —i[H, p] + LepLe — E{LCLC'D T chLc}

C
where L, 1s a jump operator.

B The Lindblad equation renders the dynamics when we do not measure
the environment.

B On measuring the environment, the Lindblad equation 1s unraveled to
yield a stochastic dynamics conditioned on a measurement record

B Stochastic trajectory 1s described by a stochastic Schrodinger equation



Quantum trajectory
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Continuous measurement

B The interval [0, T| is divided into N equipartitioned intervals

B The environmental orthonormal basis is |[my_1, ..., mg)

B |m, ) interacts with S within the time interval [ty, t; ;1] via a unitary
operator Uy,
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TUR for continuous measurement

B One-step time evolution 1s

p(t T At) = z ch(t)Xg- i Kraus representation
C

where

X, = e WAtH T — Atz LJELC (no detection)
C

N
X, = e WtH\/AtL,. (detection of ¢t event)

B Because V; = (0|U|0) corresponds to “no jump events” during [0, T],
it is given by Vy = lim X/

N —>o00



TUR for continuous measurement

B |/, can be computed via Trotter product formula as follows
Vo =e —T(iH+% SclLiLc)
Therefore, a quantum TUR becomes
Var[g(m)] _ 1
(gm))> — E

= Trs[eT(iH+% P LILC)eT(—iH+% P LILC)] _q
B This relation holds for any Lindblad dynamics (time-independent H
and L.) and for any initial density operator

B = reduces to the dynamical activity in classical Markov processes in a
particular limit



Effect of quantumness

B When we emulate classical Markov processes with the Lindblad equation,
[H ) Duc LJELC] = 0 holds. In this case, Z reduces to

B WhenT « 1, we have

- 1 2 3
o= :‘CL+§T )(+0(T )
where y =i )., Trg [[H, LJELC]p].
B When y > 0, the system gains a precision enhancement due to the
quantumness.

B For a particular model, y corresponds to non-diagonal elements in density
operators



Effect of measurement

B The Lindblad equation is invariant under the following transformation,
H—-H-— % ((*L — (LT), L - L + { where { is an arbitrary complex

B Unravelling with different ¢ corresponds to different continuous

parameter.
measurement
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Effect of measurement

B Under this transformation, = 1s
1 1
_ 2 RS T _igalrtr ot
= = ¢l TTrS[eT(lH+2L L+¢°L) T(—iH+5L L+dLt)] _ 4

B Therefore, for [(| - o0, & ~ elSI°T

B The lower bound of the quantum TUR can be arbitrary small by
employing a continuous measurement with large ||

B Measurements can be a thermodynamics resource. It 1s possible to

extract work from single reservoir without feedback [Y1 et al., PRE,
2017].



Classical limit and dynamical activity

B For classical Markov processes with transition rate y;; (t) (from i to j)
with the initial probability distribution P;, & becomes

Var[g(m)] 1 o T |
(g(m))? ZE’ = —Zpi exp zjo dt)’ji(t) — 1

B This relation holds for any time-dependent Markov chains

B ForT « 1, we have
52T ) ) Pit)

I J*i
which 1s the dynamical activity 1n classical Markov processes

B Dynamical activitﬁﬁlags important roles in classical Markov processes
[Shiraishi et al., PRL, 2018], [Garrahan, PRE, 2017]
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Numerical verifications

Random quantum channel
and random g(m)
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Numerical verifications
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Quantum Cramér-Rao inequality

B Bound on statistical estimator in quantlllm systems
Var[@] = Fo 6)
Var[@ (6)]
(96(0))° TQ (9)

state system classical
, : measurement o
preparation evolution estimation

Time evolution
Initial Final
state state
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Quantum Cramér-Rao bound

B Quantum Cramér-Rao bound has been applied to obtain quantum
uncertainty relations

B Robertson uncertainty relation, Quantum speed limit

B Classical Cramér-Rao inequality has been applied to obtain classical
thermodynamic uncertainty relations

B [Hasegawa et al., PRE, 2019], [Dechant, JPA, 2019], [Ito ef al. PRX, in press]

B It is much harder to find quantum Fisher information than in classical
cases



Quantum Fisher information

B Quantum Fisher information 1s

where M 1s POVM and F 1s a classical Fisher information

B Therefore, quantum Cramér-Rao inequality 1s satisfied for any
quantum measurements (POVMs)

B Quantum Fisher information 1s calculated by
Fo(0) = Tr[L%p]

where L 1s known as symmetric logarithm derivative.

B In general, L 1s difficult to obtain



Quantum Fisher information

B [Escher ef al, Nat. Phys., 2011] showed that quantum Fisher information 1s
upper bounded by

Fo(0) < 4[(IH(O) 1Y) — (PIH,(0) )]

where
~ avi(6)av. (6) ~ avi(e)
Hy(0) = ) =2 1,0) =i ) 2V (6)
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Derivation

B To derive the main result, we consider the following parametrization
V,(0) =e%?y, (1<m<M-1)

B We cannot freely parametrlze V5(0) due to the completeness relation
z o)W, (0) =1

B Any V,(60) satisfyinrg the completeness relation can be represented by

V@) =Y [I— ) VIOV,(0)=Y [I—e® » VIV,
V 7nZ=1 V Tnz=1

where Y 1s a unitary operator.




Derivation

B Using these parametrization, QFI 1s upper bounded by
-1
Fo(@=0) < <l/)‘(VOJrVO) ‘1/)> —1
B We next evaluate dg(g(m))g in quantum Cramér-Rao inequality

B Since we have assumed that g(0) = 0, a complicated scaling
dependence of V/j(8) on 6 can be 1gnored
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Derivation

B Substituting 1into these equality to the quantum Cramér-Rao inequality,

we obtain the main result
Var[g(m)] - 1

lgm))® <¢‘(VJV0)_1‘¢> ~1

B The main result also holds for any 1nitial mixed states p through the
purification

Var[g(m)] - 1

G e [(vfve) ] -1




Conclusion

B TUR in open quantum systems 1s obtained

B Quantum dynamics = Joint unitary evolution on principal and environment
systems

B Observable = Projective measurement on the environment
B Thermodynamic cost = Quantum analogue of dynamical activity

B Effects of quantumness on precision
B Measurements improve the precision
B Non-commutativeness improves the precision



Questions?



Quantum walk

B The quantum walk 1s defined on the chirality space spanned by
{|R), |L)} and the position space spanned by {|n)}

B One step evolution 1s operated via a unitary operator

U=SC R Iy) o
h
T o _ RYRI+ [RYLI+ ILXR] — )] = &
= 7z

5= ) [IRXRI ® In + 1)l + [L)LI ® In = 1)(nl]



Quantum walk
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Quantum walk

B The amplitudes after ¢ steps were known

B Therefore, dynamical (activity = after t steps can be calculated analytically

N
22utl (u) —1 U € even
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where u = >

B By using Stirling approximation,
5~ U



Quantum walk

B = linearly depends on the number of steps.

B This 1s in contrast to the classical case where = exponentially depends
on time



