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Thermodynamic uncertainty relation (TUR)

 Relation between fluctuation and entropy production [Barato & Seifert, PRL, 
2015] Var 𝜙𝜙 2 ≥ 2𝜎

where 𝜎 is entropy production.

 Recently, quantum TURs have been studied

 [Erker et al., PRX, 2017], [Brandner et al., PRL, 2018], [Carollo et al., PRL, 2018], 
[Liu et al., PRE, 2019], [Guarnieri et al., PRR, 2019], [Saryal et al., PRE, 2019], etc

 Still, quantum TURs are in a very early stage

 Many studies obtained case-by-case bounds

 I will present a quantum TUR valid for general open quantum dynamics



TUR in open quantum systems

𝑆𝐸 𝜓
0 𝑈 𝑚 𝑔 𝑚 𝑚 𝑚

Ψ(𝑇) = 𝑈 𝜓 ⊗ 0 = 𝑚=0
𝑀−1𝑉𝑚 𝜓 ⊗ 𝑚 , 𝑉𝑚 ≡ 𝑚 𝑈 0

𝜌 𝑇 = Tr𝐸 |Ψ(𝑇) Ψ 𝑇 | = 𝑚=0
𝑀−1𝑉𝑚𝜌𝑉𝑚†

Environment basis: |0 , |1⟩, … , |𝑀 − 1⟩}

𝑡 = 0 𝑡 = 𝑇



TUR in open quantum systems

𝑆𝐸 𝜓
0 𝑈 𝑚 𝑔 𝑚 𝑚 𝑚

 We assume that 𝑔 0 = 0
 As long as this condition is met, 𝑔(𝑚) can return any real number

 The initial state of 𝐸 was assumed to be 0 . Therefore, when the state of 
the environment after the interaction is 0 , the environment remains 
unchanged before and after the interaction. 

Environment basis: |0 , |1⟩, … , |𝑀 − 1⟩}

𝑡 = 0 𝑡 = 𝑇



TUR in open quantum systems

Then we find the following bound for the coefficient of variation of 𝑔(𝑚): Var 𝑔 𝑚𝑔 𝑚 2 ≥ 1ΞΞ = Tr𝑆 𝑉0†𝑉0 −1𝜌 − 1
Ξ corresponds to the dynamical activity in classical Markov processes

This relation holds for

 any open quantum systems as long as 𝑉0†𝑉0 > 0
 any observable 𝑔(𝑚) with 𝑔 0 = 0
 any initial density operator 𝜌 in 𝑆

𝑉0 ≡ 0 𝑈 0



Application: continuous measurement

Consider a Lindblad equation defined by𝑑𝜌𝑑𝑡 = −𝑖 𝐻, 𝜌 +𝑐 𝐿𝑐𝜌𝐿𝑐† − 12 𝐿𝑐†𝐿𝑐𝜌 + 𝜌𝐿𝑐†𝐿𝑐
where 𝐿𝑐 is a jump operator. 

The Lindblad equation renders the dynamics when we do not measure 
the environment. 

On measuring the environment, the Lindblad equation is unraveled to 
yield a stochastic dynamics conditioned on a measurement record

 Stochastic trajectory is described by a stochastic Schrödinger equation



Quantum trajectory

𝑑𝜌 = −𝑖 𝐻, 𝜌 𝑑𝑡 +𝑐 𝜌 𝑇𝑟 𝐿𝑐𝜌𝐿𝑐† − 12 𝐿𝑐†𝐿𝑐 , 𝜌 +𝑐 𝐿𝑐𝜌𝐿𝑐†𝑇𝑟 𝐿𝑐𝜌𝐿𝑐† − 𝜌 𝑑𝑁
Taking 

average w.r.t. 

measurement 

records
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This dynamics is a solution of the 

Lindblad equation



Continuous measurement

The interval [0, 𝑇] is divided into 𝑁 equipartitioned intervals

The environmental orthonormal basis is 𝑚𝑁−1, … ,𝑚0
 𝑚𝑘 interacts with 𝑆 within the time interval [𝑡𝑘 , 𝑡𝑘+1] via a unitary 

operator 𝑈𝑡𝑘



TUR for continuous measurement

One-step time evolution is𝜌 𝑡 + Δ𝑡 =𝑐 𝑋𝑐𝜌 𝑡 𝑋𝑐†
where 𝑋0 ≡ 𝑒−𝑖Δ𝑡𝐻 𝕀𝑆 − Δ𝑡𝑐 𝐿𝑐†𝐿𝑐 (no detection)𝑋𝑐 ≡ 𝑒−𝑖Δ𝑡𝐻 Δ𝑡𝐿𝑐 (detection of 𝑐th event)
Because 𝑉0 ≡ 0 𝑈 0 corresponds to “no jump events” during 0, 𝑇 , 

it is given by 𝑉0 = lim𝑁→∞𝑋0𝑁

Kraus representation



TUR for continuous measurement

 𝑉0 can be computed via Trotter product formula as follows𝑉0 = 𝑒−𝑇 𝑖𝐻+12 σ𝑐 𝐿𝑐†𝐿𝑐
Therefore, a quantum TUR becomesVar 𝑔 𝑚𝑔 𝑚 2 ≥ 1Ξ

Ξ = Tr𝑆 𝑒𝑇 𝑖𝐻+12 σ𝑐 𝐿𝑐†𝐿𝑐 𝑒𝑇 −𝑖𝐻+12 σ𝑐 𝐿𝑐†𝐿𝑐 − 1
 This relation holds for any Lindblad dynamics (time-independent 𝐻

and 𝐿𝑐) and for any initial density operator

 Ξ reduces to the dynamical activity in classical Markov processes in a 
particular limit



Effect of quantumness

 When we emulate classical Markov processes with the Lindblad equation, 𝐻,σ𝑐 𝐿𝑐†𝐿𝑐 = 0 holds. In this case, Ξ reduces toΞCL = Tr𝑆 𝑒𝑇 σ𝑐 𝐿𝑐†𝐿𝑐
 When 𝑇 ≪ 1, we haveΞ = ΞCL + 12𝑇2𝜒 + 𝑂 𝑇3
where 𝜒 ≡ 𝑖σ𝑐 Tr𝑆 𝐻, 𝐿𝑐†𝐿𝑐 𝜌 . 

 When 𝜒 > 0, the system gains a precision enhancement due to the 
quantumness. 

 For a particular model, 𝜒 corresponds to non-diagonal elements in density 
operators



Effect of measurement

The Lindblad equation is invariant under the following transformation, 𝐻 → 𝐻 − 𝑖2 𝜁∗𝐿 − 𝜁𝐿† , 𝐿 → 𝐿 + 𝜁 where 𝜁 is an arbitrary complex 

parameter.

Unravelling with different 𝜁 corresponds to different continuous 
measurement𝜁 = 0 𝜁 = 1

Both quantum trajectories 

reduce to the same dynamics 

on average



Effect of measurement

Under this transformation, Ξ isΞ = e 𝜁 2𝑇Tr𝑆 𝑒𝑇 𝑖𝐻+12𝐿†𝐿+𝜁∗𝐿 𝑒𝑇 −𝑖𝐻+12𝐿†𝐿+𝜁𝐿† − 1
Therefore, for 𝜁 → ∞, Ξ ∼ 𝑒 𝜁 2𝑇
The lower bound of the quantum TUR can be arbitrary small by 

employing a continuous measurement with large |𝜁|
Measurements can be a thermodynamics resource. It is possible to 

extract work from single reservoir without feedback [Yi et al., PRE, 
2017]. 



Classical limit and dynamical activity

 For classical Markov processes with transition rate 𝛾𝑗𝑖(𝑡) (from 𝑖 to 𝑗)
with the initial probability distribution 𝑃𝑖, Ξ becomesVar[𝑔(𝑚)]𝑔 𝑚 2 ≥ 1Ξ , Ξ =𝑖 𝑃𝑖 exp 𝑗≠𝑖 න0𝑇𝑑𝑡 𝛾𝑗𝑖 𝑡 − 1

 This relation holds for any time-dependent Markov chains

 For 𝑇 ≪ 1, we have Ξ ≃ 𝑇𝑖 𝑗≠𝑖 𝑃𝑖𝛾𝑗𝑖(𝑡)
which is the dynamical activity in classical Markov processes

 Dynamical activity plays important roles in classical Markov processes 
[Shiraishi et al., PRL, 2018], [Garrahan, PRE, 2017]



Numerical verifications

Random quantum channel 

and random 𝑔(𝑚) Continuous measurement in 

two-level atom driven by 

laser field. Observable is the 

number of emitted photon. 

The same as (b). Ξ is 

replaced with Ξ𝐶𝐿. 
Quantum walk and random 𝑔(𝑚)



Numerical verifications

Random quantum channel 

and random 𝑔(𝑚) Continuous measurement in 

two-level atom driven by 

laser field. Observable is the 

number of emitted photon. 

The same as (b). Ξ is 

replaced with Ξ𝐶𝐿. 
Quantum walk and random 𝑔(𝑚)

Points lower than 1/ΞCL is a signature of 

precision enhancement due to 

quantumness. 



Quantum Cramér-Rao inequality

Bound on statistical estimator in quantum systemsVar 𝜃 ≥ 1ℱ𝑄(𝜃)Var Θ 𝜃𝜕𝜃 Θ 2 ≥ 1ℱ𝑄(𝜃)
Initial 

state

Final 

state

Time evolution

𝜓 𝑈𝜃 𝑈𝜃|𝜓⟩Typical scenario

pure state unitary

measurement
classical 

estimation

state 

preparation

system 

evolution



Quantum Cramér-Rao bound

Quantum Cramér-Rao bound has been applied to obtain quantum 
uncertainty relations

Robertson uncertainty relation, Quantum speed limit

Classical Cramér-Rao inequality has been applied to obtain classical 
thermodynamic uncertainty relations

 [Hasegawa et al., PRE, 2019], [Dechant, JPA, 2019], [Ito et al. PRX, in press]

 It is much harder to find quantum Fisher information than in classical 
cases



Quantum Fisher information

Quantum Fisher information is ℱ𝑄 𝜃 = maxℳ ℱ𝐶(𝜃;ℳ)
where ℳ is POVM and ℱ𝐶 is a classical Fisher information

Therefore, quantum Cramér-Rao inequality is satisfied for any 
quantum measurements (POVMs)

Quantum Fisher information is calculated byℱ𝑄 𝜃 = Tr[ℒ2𝜌]
where ℒ is known as symmetric logarithm derivative. 

 In general, ℒ is difficult to obtain



Quantum Fisher information

 [Escher et al, Nat. Phys., 2011] showed that quantum Fisher information is 
upper bounded byℱ𝑄 𝜃 ≤ 4 𝜓 𝐻1 𝜃 𝜓 − 𝜓 𝐻2 𝜃 𝜓 2

where 𝐻1 𝜃 = 𝑚=0
𝑀−1 𝜕𝑉𝑚†(𝜃)𝜕𝜃 𝜕𝑉𝑚(𝜃)𝜕𝜃 , 𝐻2 𝜃 = 𝑖 𝑚=0

𝑀−1 𝜕𝑉𝑚† 𝜃𝜕𝜃 𝑉𝑚(𝜃)
Initial 

state

Final 

state

Kraus dynamics

𝜓 𝜓 𝑉𝑚(𝜃)𝑚 𝑉𝑚 𝜃 𝜓 𝜓 𝑉𝑚†(𝜃)

measurement
classical 

estimation

state 

preparation

system 

evolution



Derivation

 To derive the main result, we consider the following parametrization𝑉𝑚 𝜃 = 𝑒𝜃/2𝑉𝑚 (1 ≤ 𝑚 ≤ 𝑀 − 1)
 We cannot freely parametrize 𝑉0(𝜃) due to the completeness relation𝑚=0

𝑀−1𝑉𝑚† 𝜃 𝑉𝑚(𝜃) = 𝕀
 Any 𝑉0(𝜃) satisfying the completeness relation can be represented by𝑉0 𝜃 = 𝑌 𝕀 − 𝑚=1

𝑀−1𝑉𝑚† 𝜃 𝑉𝑚(𝜃) = 𝑌 𝕀 − 𝑒𝜃 𝑚=1
𝑀−1𝑉𝑚†𝑉𝑚

where 𝑌 is a unitary operator. 



Derivation

 Using these parametrization, QFI is upper bounded byℱ𝑄 𝜃 = 0 ≤ 𝜓 𝑉0†𝑉0 −1 𝜓 − 1
 We next evaluate 𝜕𝜃 𝑔 𝑚 𝜃 in quantum Cramér-Rao inequality

 Since we have assumed that 𝑔(0) = 0, a complicated scaling
dependence of 𝑉0(𝜃) on 𝜃 can be ignored𝑔 𝑚 𝜃 = 𝑚=0

𝑀−1 𝜓 𝑉𝑚† 𝜃 𝑉𝑚 𝜃 𝜓 𝑔(𝑚)
= 𝑚=1

𝑀−1 𝜓 𝑉𝑚† 𝜃 𝑉𝑚 𝜃 𝜓 𝑔(𝑚)= 𝑒𝜃 𝑔 𝑚 𝜃=0



Derivation

Substituting into these equality to the quantum Cramér-Rao inequality, 
we obtain the main resultVar 𝑔(𝑚)𝑔 𝑚 2 ≥ 1𝜓 𝑉0†𝑉0 −1 𝜓 − 1

The main result also holds for any initial mixed states 𝜌 through the 
purification Var 𝑔(𝑚)𝑔 𝑚 2 ≥ 1Tr 𝑉0†𝑉0 −1𝜌 − 1



Conclusion

TUR in open quantum systems is obtained

Quantum dynamics = Joint unitary evolution on principal and environment 
systems

Observable = Projective measurement on the environment

Thermodynamic cost = Quantum analogue of dynamical activity

Effects of quantumness on precision

Measurements improve the precision

Non-commutativeness improves the precision



Questions?



Quantum walk

The quantum walk is defined on the chirality space spanned by |𝑅 , |𝐿⟩} and the position space spanned by {|𝑛⟩}
One step evolution is operated via a unitary operator𝒰 = 𝒮 𝒞 ⊗ 𝕀𝐸
where 𝒞 ≡ 𝑅 𝑅 + 𝑅 𝐿 + 𝐿 𝑅 − 𝐿 𝐿2𝒮 =𝑛 |𝑅 𝑅 ⊗ 𝑛 + 1 𝑛 + |𝐿⟩⟨𝐿| ⊗ 𝑛 − 1 𝑛|

Hadamard

gate



Quantum walk

Chirality space

Position space



Quantum walk

 The amplitudes after 𝑡 steps were known 

 Therefore, dynamical activity Ξ after 𝑡 steps can be calculated analytically

Ξ = 22𝑢+1 𝑢𝑢2 −2 − 1 𝑢 ∈ even
22𝑢−1 𝑢 − 1𝑢 − 12

−2 − 1 𝑢 ∈ odd
where 𝑢 ≡ 𝑡2
 By using Stirling approximation, Ξ ∼ 𝜋𝑢



Quantum walk

Ξ linearly depends on the number of steps. 

This is in contrast to the classical case where Ξ exponentially depends 
on time


