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IN THIS TALK, WE WILL EXPLORE THE
RELATIONSHIP BETWEEN TWO ASPECTS

OF THERMODYNAMICS:

A) STOCHASTIC |

"HERMO

B) GENERALIZED

ENTROP

DYNAMICS

ES



A) STOCHASTIC THERMODYNAMICS

e FEMERGENT FIELD OF THERMODYNAMICS (SINCE 90'S)

e DESCRIBES NON-EQULIBRIUM THERMODYNAMICS BY
STOCHASTIC VARIABLES, ESPECIALLY IN MICROSCOPIC
SYSTEMS

e MAIN RESULTS (OTHER TALKS): FLUCTUATION
THEOREMS, THERMODYNAMIC UNCERTAINTY
RELATIONS, NANOMOTORS...



A) STOCHASTIC THERMODYNAMICS
KEY ASPECTS

1) MASTER EQUATION: LINEAR MARKOVIAN DYNAMICS

pm — Zn (wmnpn — wnmpm)

2) (LOCAL) DETAILED BALANCE: PROBABILITY CURRENTS VANISH FOR
(LOCAL) EQUILIBRIUM DISTRIBUTIONS

*

—mn — L. — ay —-m _-n

3) SECOND LAW OF THERMODYNAMICS:
;> @



B) GENERALIZED ENTROPIES

e STUDIED IN INFORMATION THEORY SINCE 60'S

e USED IN PHYSICS SINCE 90'S

¢ MAIN AIM: STUDY THERMODYNAMICS OF SYSTEMS WITH NON-
BOTLZMANNIAN EQUILIBRIUM DISTRIBUTIONS

(DUE TO CORRELATIONS, LONG-RANGE INTERACTIONS...)



B) GENERALIZED ENTROPIES

KEY ASPECTS
) GENERAL FORM OF ENTROPY:

S(P) = f(2m9(Pm))
1) MAXIMUM ENTROPY PRINCIPLE:

Maximize S(p) subject to constraint that p is normalized and expected energy has a given value

Solution: MaxEnt distribution: pX, = (g') ! (%), Cr=f(>,,9m))

QUESTION: FOR WHAT GENERAL FORM OF ENTROPIES DO THE KEY
ASPECTS OF STOCHASTIC THERMODYNAMICS HOLD IF THE SYSTEM
1S OFF EQUILIBRIUM?



REQUIREMENTS

BLUE - STANDARD STOCHASTIC THERMODYNAMICS




O) DEFINITIONS

INTERNAL ENERGY

ENTROPY

S=1Ff (Zm g(pm))

S=—->. pmnlogpn



1) MARKOVIAN DYNAMICS
pm — Zn [J(wmnapn) — J(wnmapm)]

pm — Zn (wmnpn o wnmpm)
NORMALIZATION

TRANSITION RATES

wmn

PROBABILITY CURRENTS
I (W, pn) — J (Wi Pm)|



2) DETAILED BALANCE

TWO WAYS HOW TO CHARACTERIZE EQUILIBRIUM:

A) MAXIMUM ENTROPY PRINCIPLE

P =(g)"" (“Efff’")

P}, = exp(—a — Bep,)

B) PROBABILITY CURRENTS VANISH

J(’wmnap;) — J(wnmvp;z)

* >k
WmnPp — WnmPp,



35) SECOND LAW OF THERMODYNAMICS
% — Sz + Se

ENTROPY PRODUCTION RATE
S; >0 and Si:O(:)J(wmn,pn):J(wnm,pm)Vm,n

ENTROPY FLOW RATE

5. = 4 St = §



MAIN RESULT




THEOREM:
REQUIREMENTS 1-3) IMPLY THAT

J(wmnapn) — %b(](’wmn) R g/(pn))

WHERE

4 - arbitrary function
Y - increasing function



IDEA OF THE PROOF

1. CALCULATE TIME DERIVATIVE OF ENTROPY
2.DIVIDE IT INTO
e NON-NEGATIVE ENTROPY PRODUCTION RATE
e ENTROPY FLOW RATE
3. USE DETAILED BALANCE

4. FROM ENTROPY FLOW RATE WE GET
CONSTRAINTS ON THE FORM OF THE CURRENT

5.PROOF IN THE APPENDIX (AVAILABLE ON WEB)



- XAMPL




LINEAR MARKOVIAN DYNAMICS

pm — Zn (wmnpn _ wnmpm)

Jmn = WmnPn = eXp(log Wi + log pn)

= g'(pn) = —log(pn)

= 5 = — ann lngn

REQUIRING SECOND LAW, DETAILED BALANCE, AND LINEAR

MARKOVIAN DYNAMICS FORCES ENTROPY TO BE SHANNON ENTROPY



FINITE HEAT BATH

HAM'LTONIAN H:Hsystem+Hbath

SCAL'NG AHbath(xl,. . .,mn) — Hbath()\l/alml,-- .,Al/anmn)
EQUILIBRIUM: p(E) o« [6(E — Hyqp) dwy ... d,
Q-EXP: p(E) « (1—(g—1)BE)Y@D)

TSALLIS ENTROPY: S = 15 (X Pl — Pm)

a-1_4q
— g/(pm) — %

MASTER EQUATION:  Jop = 9(j(wim) + ZoL)



FINITE HEAT BATH
CONSEQUENCES

REASONABLE SCENARIOS

IF ALL REQUIREMENTS ARE OBEYED
SYSTEM'S DYNAMICS IS NON-LINEAR

IF ALL REQUIREMENTS EXCEPT 1) ARE OBEYED
SYSTEM'S DYNAMICS IS NON-MARKOVIAN



FINITE HEAT BATH
CONSEQUENCES

UNREASONABLE SCENARIOS

IF ALL REQUIREMENTS EXCEPT 2) ARE OBEYED

THEN THE DISTRIBUTION OBTAINED FROM
ENTROPY MAXIMIZATION WOULD BE A NON-
EQUILIBRIUM STEADY STATE

IF ALL REQUIREMENTS EXCEPT 3) ARE OBEYED

THEN SECOND LAW OF THERMODYNAMICS
WOULD BE VIOLATED



MAIN 1D

A

NON-BOLTZMANNIAN EQUILIBRIUM
DISTRIBUTION

IN ASYSTEM SATISFYING
DETAILED BALANCE AND 2ND LAW
FORCES THE SYSTEM TO OBEY EITHER
NON-LINEAR OR NON-MARKOVIAN DYNAMICS



SK

APPENDIX
- CH OF PROOF




STANDARD STOCHASTIC THERMODYNAMICS

S — Zmpm logpm

— _% mn (wmnpn e wnmpm) log 2;_2

1 WinnD
— A Z(wmnpn = wnmpm) lOg e
2 = WymPrm
1 Wmn
+ 5 Z(wmnpn wnmpm) log W
o



SKETCH OF PROOF

S = Cf Zm Pmg (Pm)
= LY I = Fom) (g () — o' (p1))

C
% Yo (Frn = Jum) (g () + B — g (P) — Bran)

= S = ) ($(o) — ()

7

LS U= Jun)(§ (5) + 6(Tm) — 5 (5n) — ()

mn
R J/

Se




SKETCH OF PROOF

S; = ¢ — increasing

Se = Crlg' (pm) + ¢(Jum) — ¢ (Pn) — $(Jmn)] = 27
= ¢(Jmn) = J(Wmn) — g'(Pn)

= Jn = $(§ (W) — ¢ (), ¥ = ¢! - increasing
L.

NOTES:
J(Wmn) — J(Wnm) = %
-

ANALOGOUS FOR MULTIPLE HEAT BATHS



