
Equilibrium and non-equilibrium thermodynamics

of small systems with emergent structures

Jan Korbel, Simon Lindner, Rudolf Hanel, Stefan Thurner

Medical Univeristy of Vienna and Complexity Science Hub Vienna

29th May 2020



Introduction

◮ L. Boltzmann defined entropy as the logarithm of state
multiplicity: S = kB logW

◮ When multiplicity is a multinomial factor W = n!∏m
i=1

ni !

◮ we get Boltzmann-Gibbs entropy S = −
∑m

i=1
pi log pi

◮ sample space grows exponentially

W (n) =
∑

∑
m
i=1

ni=n

n!
∏m

i=1
ni !

= mn

◮ Sample space of complex systems typically does not grow
exponentially due to e.g., correlations (sub-exponential growth)

◮ Also we get super-exponential growth for systems with
emergent structures - e.g., molecules



Multiplicity of a system with molecules

◮ Let us consider a system of n particles

◮ particles can have states {s
(1)
1 , . . . , s

(1)
m1

}

◮ Moreover, particles can form molecules

◮ molecules of 2 particles have states {s
(2)
1

, . . . , s
(2)
m2

}
◮ . . .
◮ molecules of j particles have states {s

(j)
1
, . . . , s

(j)
mj
}

◮ Maximum size of molecules - m (≤ n).

◮ There are n
(j)
i molecules of size j and state s

(j)
i

◮ Altogether we have
∑m

j=1 jnj = n particles



Multiplicity of a system with molecules

◮ Entropy is given by the Boltzmann formula

S({n
(j)
i }) = logW ({n

(j)
i })

◮ Let us focus on the multiplicity of state {n
(j)
i }

◮ Number of all configurations is n!

◮ Many of these configurations correspond to the same
microstate

◮ For the case of single particles, all permutations of n
(1)
i

particles in the state s
(1)
i correspond to the same state- this is

(n
(1)
i )! states

◮ We will show that for molecules each state corresponds to

(n
(j)
i )!(j!)n

(j)
i permutations





Entropy of a system with molecules

◮ Total multiplicity is therefore

W ({n
(j)
i }) =

n!
∏

ij n
(j)
i !(j)!n

(j)
i

◮ Entropy can be expressed as (using Stirling’s approximation)

S = n log n −
∑

ij

n
(j)
i log n

(j)
i −

∑

ij

n
(j)
i log j!

◮ Defining p
(j)
i = n

(j)
i /n, we end with

S/n = −
∑

ij

p
(j)
i log p

(j)
i −

∑

ij

p
(j)
i log

j!

nj−1



Finite range interaction

◮ Until now, we allowed all particles to form molecules

◮ Real systems have finite interaction range

◮ simple model - consider b boxes

◮ Particles can form molecules only in boxes

◮ Resulting entropy

S/n = −
∑

ij

p
(j)
i log p

(j)
i −

∑

ij

p
(j)
i log

j!

c j−1

where c = n/b is “concentration” of particles



MaxEnt distribution

◮ Consider a Hamiltonian H =
∑

ij ǫ
(j)
i p

(j)
i

◮ Maximize Lagrange functional

L = S/n − α





∑

ij

jp
(j)
i − 1



− β





∑

ij

ǫ
(j)
i p

(j)
i − U





◮ MaxEnt distribution can be found in the following form

p̂
(j)
i =

c j−1

j!
exp

(

−jα− 1 − βǫ
(j)
i

)

◮ α is calculated from normalization condition
∑

ij jp
(j)
i = 1 as

∑

j

[

c j−1

e(j − 1)!

∑

i

e−βǫ
(j)
i

]

(

e−α
)j

= 1



Thermodynamics

◮ We obtain thermodynamics from the following relation

S = α+ βU +
∑

ij

p
(j)
i

◮ Helmholtz free energy

F = U − TS = −
α

β
−

∑

ij p
(j)
i

β

◮ Key quantity: M =
∑

ij p
(j)
i number of molecules per particle



Non-equilibrium thermodynamics

◮ Let us consider a general linear Markovian evolution given by
master equation

ṗ
(j)
i (t) =

∑

kl

(

w
jl
ikp

(l)
k (t)− w

lj
kip

(j)
i (t)

)

◮ We consider detailed balance for equilibrium distribution

w
jl
ik

w
lj
ki

=
j!

l!
c l−j exp

[

α(l − j) + β
(

ǫ
(l)
k − ǫ

(j)
i

)]



2nd law of thermodynamics

◮ Time derivative of entropy can be expressed as

dS

dt
= −

∑

ij

ṗ
(j)
i log p

(j)
i −

∑

ij

ṗ
(j)
i −

∑

ij

ṗ
(j)
i log

(

j!

c j−1

)

◮ The second term does not vanish. It is equal to Ṁ.

◮ After a straightforward calculation, we obtain that

dS

dt
= −

dM

dt
+ βQ̇ + Ṡi



Fluctuation theorems for molecule systems

◮ Time derivative of free energy is therefore

Ḟ = U̇ − TṠ = Ẇ +✓✓̇Q + TṀ −✓✓̇Q − TṠi

◮ Thus, entropy production is equal to

∆Si = β(W −∆F ) + ∆M

◮ From this, we directly obtain Crooks’ fluctuation theorem

P(W )

P̃(W̃ )
= exp (β(W −∆F ) + ∆M)

and Jarzynski equality

〈exp(−βW )〉 = exp(−β∆F +∆M)



Perspectives

◮ Thermodynamics of small closed chemical networks

◮ Critical phenomena for systems with emergent structures
◮ First step - fully connected Ising model with molecule states
◮ Next steps - applications of information geometry
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