Quantum Jump Approach to Microscopic Heat Engines

Stochastic Thermodynamics of Complex Systems Online CSH Workshop 2020

Kay Brandner School of Physics and Astronomy, University of Nottingham

P. Menczel, C. Flindt, KB, arXiv:2005.12231

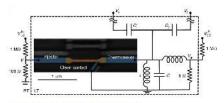
University of Nottingham

- (1) Motivation: Small-Scale Calorimetry
- (2) Qubit Engine: Model and Results
- (3) General Picture

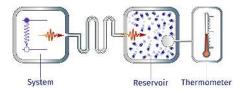
Small-Scale Calorimetry

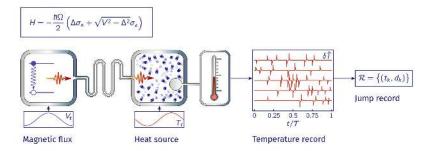
1782 - Ice Calorimeter

2020 - Quantum Calorimeter



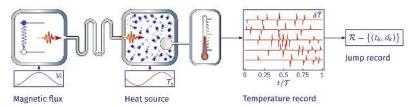
+> B. Karimi et al., Nat. Commun. 11 367 (2020)



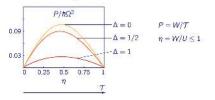


- ⇒ J. P. Pekola et al., New J. Phys. 15 115006 (2013)
- ⇒ M. Campisi, J. P. Pekola, R. Fazio, New J. Phys. 17 035012 (2015)
- -> B. Donvil et al., Phys. Rev. A 97 052107 (2018)

$$H = -\frac{\hbar\Omega}{2} \left(\Delta \sigma_x + \sqrt{V^2 - \Delta^2} \sigma_z \right)$$



Power vs Efficiency



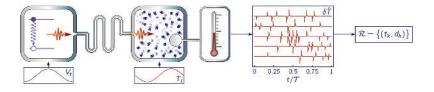
Trade-off relation

$$P \leq f[\eta, A_1, A_2, \dots]$$

What is f?

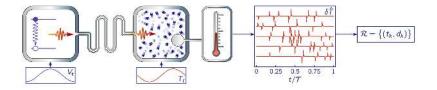
What are suitable the parameters A_i? How to access them?

Qubit Engine: Model and Results



$$\begin{aligned} & \text{Master Equation} \\ & \rho_t = -\frac{i}{\hbar} [\rho_t, H_t] + \frac{1}{2} [J_t^+ \rho_t, J_t^{+\dagger}] + \frac{1}{2} [J_t^+, \rho_t J_t^{+\dagger}] \\ & + \frac{1}{2} [J_t^- \rho_t, J_t^{+\dagger}] + \frac{1}{2} [J_t^-, \rho_t J_t^{+\dagger}] \\ & H = -\frac{\hbar\Omega}{2} \left(\Delta \sigma_x + \sqrt{V^2 - \Delta^2} \sigma_z \right) \\ & J^{\pm} = \sqrt{\frac{\mp \kappa \Omega V}{1 - \exp[\pm \hbar\Omega V/T]}} |E^{\pm}\rangle \langle E^{\pm}| \end{aligned} \end{aligned}$$

Qubit Heat Engine - Quantum Jumps



Quantum Jump Trajectories

$$|\psi_{0}\rangle \rightarrow |\psi_{7}\rangle = W[\mathcal{R}]|\psi_{0}\rangle / ||W[\mathcal{R}]|\psi_{0}\rangle ||$$

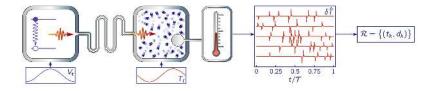
$$W[\mathcal{R}] \equiv W_{T,t_{tot}} \int_{k=1}^{t_{tot}} J_{t_{t}}^{d_{t}} W_{t_{0},t_{t-1}}$$

$$W_{t',t} = \exp\left[-\frac{i}{\hbar} \int_{t}^{t'} d\tau K_{\tau}\right]$$

$$K_{t} \equiv H_{t} - \frac{i\hbar}{2} J_{t}^{+1} J_{t}^{+} - \frac{i\hbar}{2} J_{t}^{-1} J_{t}^{-}$$

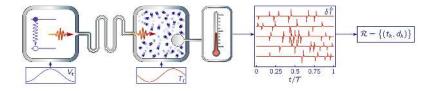
$$p[\mathcal{R};\psi_{0}] = ||W[\mathcal{R}]|\psi_{0}\rangle||^{2}$$

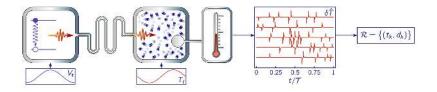
Qubit Heat Engine - Quantum Jumps



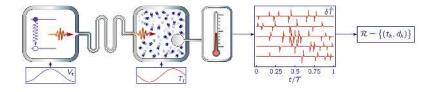
Quantum Jump Trajectories	Input and Output	
$ \psi_0 angle ightarrow \psi_{\mathcal{T}} angle = \mathcal{W}[\mathcal{R}] \psi_0 angle ig/ig\ \mathcal{W}[\mathcal{R}] \psi_0 angleig\ $	$W = Q = \mathbb{E}\left[\sum_{k} d_{k}Q_{t_{k}}\right]$	$U = \mathbb{E}\left[\sum_{k} d_{k} U_{l_{k}}\right]$
$W[\mathcal{R}] \equiv W_{\mathcal{T}, t_{\mathcal{M}}} \prod_{k=1}^{\ell} J_{t_{k}}^{d_{k}} W_{t_{k}, t_{k-1}}$	$Q_t = \hbar \Omega V_t$	$U_t = \hbar \Omega V_t (1 - T/T_t)$
$W_{t',t} = \exp\left[-\frac{i}{n}\int_{t}^{t'}\!\!\!d\tau\; K_{\tau}\right]$		
$\mathcal{K}_t \equiv \mathcal{H}_t - \frac{i\hbar}{2}J_t^{+\dagger}J_t^+ - \frac{i\hbar}{2}J_t^{-\dagger}J_t^-$		
$p[\mathcal{R} \psi_0] = \left\ W[\mathcal{R}] \psi_0 ight angle ight\ ^2$		

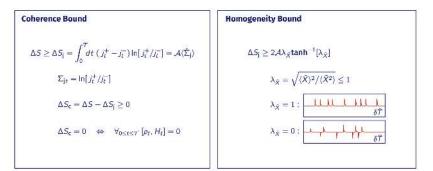
Qubit Heat Engine - Quantum Jumps

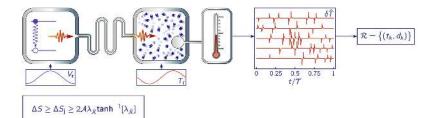


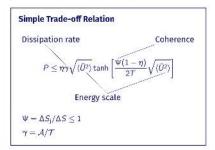


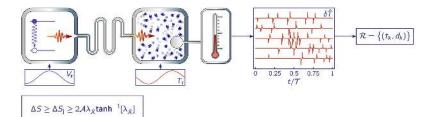
Coherence Bound
$$\Delta S \ge \Delta S_{j} = \int_{0}^{T} dt \left(j_{t}^{+} - j_{t}^{-} \right) \ln \left[j_{t}^{+} / j_{t}^{-} \right] = \mathcal{A} \langle \hat{\Sigma}_{j} \rangle$$
$$\Sigma_{jt} = \ln \left[j_{t}^{+} / j_{t}^{-} \right]$$
$$\Delta S_{c} = \Delta S - \Delta S_{j} \ge 0$$
$$\Delta S_{c} = 0 \quad \Leftrightarrow \quad \forall_{0 \le t \le T^{-}} \left[\rho_{t}, H_{t} \right] = 0$$

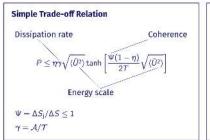










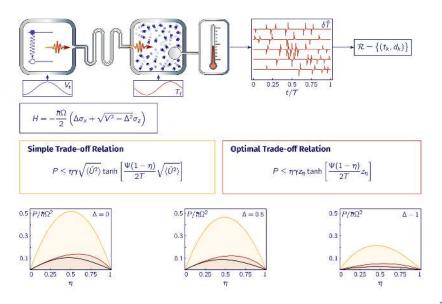


Optimal Trade-off Relation

$$P \le \eta \gamma z_{\eta} \tanh \left[\frac{\Psi(1-\eta)}{2T} z_{\eta} \right]$$

$$z_{\eta} = \frac{\langle \hat{Q}^2 \rangle \langle \hat{Q}^2 \rangle - \langle \hat{R}^2 \rangle^2}{\langle \hat{Q}^2 \rangle - 2\eta \langle \hat{R}^2 \rangle + \eta^2 \langle \hat{Q}^2 \rangle}$$

$$R_t = \hbar \Omega V_t \sqrt{\eta_t}$$



The General Picture

Multi-Level Systems + 1 Reservoir

 $\Delta S \ge \Delta S_j \ge 2A\lambda_{\hat{X}} \operatorname{tanh}^{-1}[\lambda_{\hat{X}}]$

Multi-Level Systems + 1 Reservoir

 $\Delta S \geq \Delta S_j \geq 2\mathcal{A}\lambda_{\hat{X}} tanh^{-1}[\lambda_{\hat{X}}]$

$$P \leq \eta \gamma \sqrt{\langle \bar{\mathcal{Q}}^2 \rangle} \tanh \left[\frac{\Psi(1-\eta)}{2T} \sqrt{\langle \bar{\mathcal{Q}}^2 \rangle} \right] \longrightarrow P \leq \eta (1-\eta) \frac{\vartheta_0 \Delta_v^2}{T} \int_0^T dt \ (f_t^u)^2$$

⇒ KB, U. Seifert, PRE 93 062134 (2016)

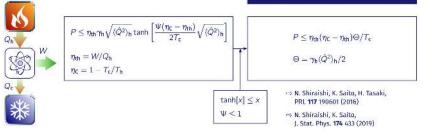
$$\mathcal{P} \leq \eta \gamma z_{\eta} \tanh \left[rac{\Psi(1-\eta)}{2T} z_{\eta}
ight]$$

$$\bullet \qquad P \leq \frac{\vartheta_0 \Delta_0^2}{4T} \int_0^T dt \ (f_t^u - \bar{f}^u)^2$$

KB, M. Bauer, U. Seifert, PRL 119 170602 (2017)

Multi-Level Systems + N Reservoirs

 $\Delta S \geq \sum\nolimits_{\nu} \Delta S^{\nu}_{j} \geq \sum\nolimits_{\nu} 2\mathcal{A}_{\nu} \lambda^{\nu}_{\hat{X}} \tanh^{-1}[\lambda^{\nu}_{\hat{X}}]$



Multi-Level Systems + 1 Reservoir

 $\Delta S \geq \Delta S_{j} \geq 2\mathcal{A}\lambda_{\hat{X}} tanh^{-1}[\lambda_{\hat{X}}]$

$$P \leq \eta \gamma \sqrt{\langle \bar{\theta}^2 \rangle} \tanh \left[\frac{\Psi(1-\eta)}{2T} \sqrt{\langle \bar{\theta}^2 \rangle} \right] \longrightarrow P \leq \eta (1-\eta) \frac{\vartheta_0 \Delta_v^2}{T} \int_0^T dt \left(f_t^u \right)^2$$

⇒ KB, U. Seifert, PRE 93 062134 (2016)

$$P \leq \eta \gamma z_\eta \tanh\left[\frac{\Psi(1-\eta)}{2T}z_\eta\right]$$

 $P \leq \eta_{\rm th} \eta_{\rm h}$

+ many more

$$\bullet \qquad P \leq \frac{\vartheta_0 \Delta_a^2}{4\mathcal{T}} \int_0^{\mathcal{T}} dt \ (f_t^a - \bar{f}^a)^2$$

KB, M. Bauer, U. Seifert, PRL 119 170602 (2017)

Multi-Level Systems + N Reservoirs

$$\Delta S \geq \sum_{\nu} \Delta S_{j}^{\nu} \geq \sum_{\nu} 2\mathcal{A}_{\nu} \lambda_{\mathcal{X}}^{\nu} \tanh^{-1}[\lambda_{\mathcal{X}}^{\nu}]$$

$$\sqrt{\langle \hat{Q}^2 \rangle_{h}} \tanh \left[\frac{\Psi(\eta_{\rm C} - \eta_{\rm th})}{2T_{\rm c}} \sqrt{\langle \hat{Q}^2 \rangle_{h}} \right] \longrightarrow P \leq \eta_{\rm th} (\eta_{\rm C} - \eta_{\rm th}) \Theta/T_{\rm c} \qquad \Theta = \gamma_{\rm h} \langle \hat{Q}^2 \rangle_{h}/2$$

→ N. Shiraishi, K. Saito, H. Tasaki, PRL 117 190601 (2016)
 ⇒ N. Shiraishi, K. Saito, J. Stat. Phys. 174 433 (2019)

For: any multi-level systems, number of reservoirs, periodic protocols Assumptions: weak coupling, detailed balance (instantaneous)