

1

Dissipation bounds precision and speed

Massimiliano Esposito

Gianmaria Falasco (UL), Jean-Charles Delvenne (UCL)

CSH Online Workshop "Stochastic thermodynamics of complex systems", May 27-29, 2020

Outline

Part I: Unifying Thermodynamic Uncertainty Relations, Falasco, Esposito, Delvenne, New J. Phys. 22, 053046 (2020)

Part II:The dissipation-time uncertainty relationFalasco, Esposito, [arXiv:2002.03234]

Part I: Thermodynamic Uncertainty Relations

Hilbert uncertainty relation

probability $P(\omega)$ and observable $O(\omega) \in$ Hilbert space H

precision
$$\mathfrak{p}(O) := \frac{\langle O \rangle^2}{\operatorname{Var}(O)} = \frac{\langle O \rangle^2}{\langle O | O \rangle - \langle O \rangle^2}$$

Ritz theorem $\exists m | \forall O : \langle m | O \rangle = \langle O \rangle \in$ Dual of H

Cauchy-Schwartz $\mathfrak{p}(O) \leq \langle m \rangle / (1 - \langle m \rangle)$

Arbitrary observable:
$$m = 1 \longrightarrow \mathfrak{p}(O) \leq \infty$$

Antisymmetric observables under time reversal $O(\tilde{\omega}) = -O(\omega) \longrightarrow m = \frac{p - \tilde{p}}{p + \tilde{p}}$

$$\begin{array}{ll} \text{Tight bound:} \quad \mathfrak{p} \leq \frac{\langle \tanh \frac{\sigma}{2k_{\mathrm{B}}} \rangle}{1 - \langle \tanh \frac{\sigma}{2k_{\mathrm{B}}} \rangle} \quad \text{ with } \quad \sigma = k_{\mathrm{B}} \log \frac{p}{\tilde{p}} \end{array}$$

PRE 96 020103 (2014)

Summary

Unifying framework which:

pinpoints the mathematical essence of TUR

• gives new (tight) bounds and recovers previous ones

• can be extended to consider other symmetries than time reversal

Falasco, Esposito, Delvenne, New J. Phys. 22, 053046 (2020)

Part II: Dissipation-Time Uncertainty Relation

• Trajectories ω_t in a space Ω_t with probability measure $P(\omega_t)$

• Stopping time
$$\tau := \inf\{t \ge 0 : O(\omega_t) \in D\}$$

• Space of survived trajectories Ω_t^s : If $\omega_t \in \Omega_t^s$ then $O(\omega_t) \notin D$

• Survival probability:
$$p^{s}(t) = \sum_{\omega_{t} \in \Omega_{t}^{s}} P(\omega_{t}) = \sum_{\omega_{t} \in \Omega_{t}} \chi(O(\omega_{t}))P(\omega_{t})$$

• Instantaneous rate $r(t) := -\frac{1}{p^{s}(t)} \frac{dp^{s}}{dt}(t)$

• Time reversed trajectory $\tilde{\omega}_t$

•
$$k_{\rm B} \log \frac{P(\omega_t)}{P(\tilde{\omega}_t)} =: \int_0^t dt' \dot{\Sigma}(\omega_t)$$

Initially in stationary distrib (without threshold)

• Survival probability for
$$\tilde{O}(\omega) \equiv O(\tilde{\omega}_t)$$
: $\tilde{p}^{s}(t) := \sum_{\omega_t \in \Omega_t} \chi(\tilde{O}(\omega_t)) P(\omega_t)$

$$\frac{1}{k_{\rm B}} \langle \dot{\Sigma} \rangle_{\tilde{s}}(t) \ge r(t) - \tilde{r}(t)$$

Assume: $r(t) \gg \tilde{r}(t)$ $t \ll \min_{t} 1/\tilde{r}(t) \longrightarrow \tilde{p}^{s}(t) \approx 1$ $\langle \dot{\Sigma} \rangle_{\tilde{s}} \simeq \langle \dot{\Sigma} \rangle = \langle \dot{S}_{e} \rangle$ $\langle \dot{S}_{e} \rangle / k_{B} \ge r(t)$

Mean first passage time
$$\langle au
angle = \int_0^\infty dt \, p^{
m s}(t) =: {\cal T}$$

Dissipation-Time Uncertainty Principle

To realize a process in a time \mathcal{T} at least k_B/\mathcal{T} must be dissipated

Example I: Overdamped particle

$$\dot{x} = -U'(x) + \sqrt{2/\beta}\xi \qquad x \in [0, 2\pi]$$
$$U(x) = a\cos(x) - fx$$

$$O = \int_0^t \dot{x}_{t'} dt', \quad D = [2\pi N, \infty)$$
$$\tilde{O} = -2\pi N$$

 *

Example II: 2 level system between 2 baths

$$O = (\epsilon_2 - \epsilon_1) \int_0^\delta dt' \left[\frac{dN_{2\to1}^c}{dt'} - \frac{dN_{1\to2}^c}{dt'} \right], \ D = [E, \infty)$$

Remarks

- For integrated currents, $\dot{S}_{
 m e}$ ${\cal T} \geq k_{
 m B}$ can be derived directly from FT
- For integrated currents and stationary Markov dynamics, it can also be obtained from [Roldan, Neri,..., Julicher, PRL 115, 250602 (2015)]
- Can be generalized to: periodic driving

 $\overline{\langle \dot{S}_{\rm e} \rangle^{\rm B}} \mathcal{T} \ge k_{\rm B}$

- transient driven dynamics $\langle dS/dt \rangle^{\rm B} + \langle \dot{S}_{\rm e} \rangle^{\rm B} \ge k_B r_{\rm F}(t)$

- Dynamics other than time reversed can be considered
- Contrary to usual speed limits (changes from state to state) the Dissipation-Time UR deals with stationary processes and involves only EP

Conclusion

Thermodynamics constrains nonequilibria

Dissipation bounds precision and speed

Caution: It does not mean that more dissipation will necessary speed up and improve precision