Downloaded 05/09/22 to 192.76.8.89 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM REVIEW (© 2022 Society for Industrial and Applied Mathematics
Vol. 64, No. 2, pp. 343-359

Variance and Covariance of
Distributions on Graphs*

Karel Devriendt!
Samuel Martin-Gutierrezt
Renaud Lambiotte!

Abstract. We develop a theory to measure the variance and covariance of probability distributions
defined on the nodes of a graph, which takes into account the distance between nodes.
Our approach generalizes the usual (co)variance to the setting of weighted graphs and
retains many of its intuitive and desired properties. Interestingly, we find that a number of
famous concepts in graph theory and network science can be reinterpreted in this setting as
variances and covariances of particular distributions. As a particular application, we define
the mazimum variance problem on graphs with respect to the effective resistance distance,
and we characterize the solutions to this problem both numerically and theoretically. We
show how the maximum variance distribution is concentrated on the boundary of the graph,
and illustrate this in the case of random geometric graphs. Our theoretical results are
supported by a number of experiments on a network of mathematical concepts, where we
use the variance and covariance as analytical tools to study the (co)occurrence of concepts
in scientific papers with respect to the (network) relations between these concepts.
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I. Introduction. The variance of a probability distribution is a fundamental con-
cept in the toolkit of probability theory and statistics and is routinely applied through-
out science, engineering, and numerous practical settings. Intuitively speaking, the
variance captures how spread out the outcomes of a distribution are, and thus reflects
the inherent variability in that distribution. In many practical cases, however, prob-
ability distributions are defined on the nodes of a network: websites on the internet,
individuals in a social network, neurons in the brain, etc. These nodes are the building
blocks of a network, and when studying distributions or signals defined on nodes it is
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natural to take the underlying network structure into account. As the usual definition
of variance cannot do so, we thus lack a basic methodological tool when analyzing
distributions and signals on a graph.

In this article, we propose measures of variance and covariance for distributions
defined on a network, which take into account the underlying structure of the network
by considering the distances between nodes. These distances provide a notion of
what it means to be “spread out” on the network, which in turn allows us to define
(co)variances of distributions on the network. Our proposed formulas for variance
and covariance take a very simple mathematical form (as a quadratic product and
matrix trace, respectively) yet still capture many of the intuitive and mathematical
properties of the usual (co)variance. To illustrate our new measures in practice, we
apply the proposed variance and covariance measures to the analysis of an empirical
network of mathematical concepts with data from a collection of scientific papers.
Our approach allows for a unified and intuitive treatment of the structural (relations
between concepts) and functional (usage of concepts in papers) data in this system and
we describe some qualitative and quantitative findings. As a second application, we
show that the variance and covariance of some particular distributions correspond to
previously known graph characteristics, offering a new framework in which to interpret
and understand them.

We furthermore consider the mazimum variance problem, which seeks to deter-
mine the largest possible variance on a given graph and to characterize the distribu-
tion(s) that attains it. As a theoretical contribution, we find a complete characteriza-
tion of the maximum variance distribution when considering the effective resistance
as a distance measure between nodes. We show that this maximum variance distri-
bution is concentrated on the boundary nodes of a graph and provide support for this
intuition with experiments on random geometric graphs and further analytical results
on a number of simple graphs.

To the best of our knowledge, the measures that we introduce for variance and
covariance are new in the context of distributions on networks. Mathematically, our
variance measure is a special case of Rao’s well-known quadratic entropy [28, 33] which
measures the diversity of distributions on general categorical variables with a notion
of dissimilarity between the variables. This correspondence connects our work to
the more general setting of diversity measures which are widely used, for instance, in
ecology [30, 6]. The work of Leinster et al. on maximum diversity distributions [20, 19]
is particularly relevant (see section 5). Additionally, the effective resistance matrix
is well studied in the context of graph theory [2, 17, 37], and our variance quadratic
form (2.3) and the related maximum variance problem (5.1) were previously defined
and studied in different contexts. Hjorth et al. [15] studied (5.1) as a generalized
diameter of metric spaces and described the conditions under which this problem
has a unique solution. Dankelmann [7] defined the quadratic form in (2.3) for the
geodesic graph distance and solved the corresponding maximization problem for tree
and cycle graphs. These results are generalized from the geodesic graph distance to
the effective resistance in [3, 11], where it is shown that the corresponding maximum
variance problem can be solved efficiently.

The rest of this article is organized as follows: In section 2 we introduce the
relevant mathematical background on graphs and (joint) distributions on graphs and
introduce our new variance and covariance measures. Section 3 gives an application
of the (co)variance measures to a network of mathematical concepts. In section 4 we
show how our new measures relate to a number of existing concepts. In section 5 we
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introduce and solve the maximum variance problem on a graph, with respect to the
effective resistance distance. We characterize the maximum variance solutions, with
a particular focus on the support of the maximum variance distributions. Section 6
concludes the article with a summary of the results and an outlook on further possible
applications.

2. Variance and Covariance on Graphs.

2.1. Preliminaries. We start by introducing a number of preliminary notions
about graphs and probability theory. A graph G consists of a set of n nodes N and
a set of links £ that connect pairs of nodes; a link between two nodes ¢ and j thus
corresponds to an element (¢,5) € £. Every link is furthermore assigned a (positive,
real) weight ¢;; > 0, resulting in a weighted graph. The degree' of a node is defined
as the combined weight of all links connected to a node, k; = ) .¢;;. Since graphs
can be seen as weighted graphs where ¢;; = 1 for all links, we will further work in
the more general setting of weighted graphs. Furthermore, we will assume all graphs
to be finite (n < 0o) and connected, which means that there is a path between every
pair of nodes.

A distribution on a graph is a function p : N — [0, 1] which assigns a nonneg-
ative number p(7) to each node in the graph such that all numbers add up to one,
> iearP(i) = 1. Distributions can be used to define a random node N, which is a
random element of the node set, with probability to equal any of the nodes i given
by the corresponding distribution p(i). In other words, we can “sample” the random
node N and get any of the nodes of G with probability

Pr[N =] = p(i) for all i € N.

For this reason, the value p(i) of an element is called the probability of i. To specify
the underlying distribution of a random node N, we often write N ~ p and say that
N is distributed according to p.

A joint distribution on a graph is a function P : N x N — [0, 1] which assigns a
nonnegative number P(i, j) to each pair of nodes in the graph such that all numbers
add up to one. A joint distribution can be used to define a random pair of nodes
(N, M) which are two random elements of the node set, with the probability of being
sampled given by the joint distribution as

Pr[(N, M) = (i, §)] = P(i, ) for all (i,5) € N x \.

Any joint distribution P on node pairs also naturally leads to two (simple) distribu-
tions p and ¢ on the nodes, defined by p(i) = >\ P(i,5) and §(j) = > ;cpr P4, ),
which are called the marginal distributions of P.

In section 3 we consider an application of these concepts in a practical setting,
which serves as an illustration of the definitions above. We will consider a graph made
up of nodes that represent mathematical concepts with links that reflect conceptual
relations between pairs of concepts (inferred from Wikipedia hyperlinks) and study
a collection of scientific papers that use these concepts. The occurrence of a subset
of concepts in a given paper is translated to a distribution on the relevant nodes
(concepts) in the network, and the frequency of pairs of concepts appearing together
in a paper is represented as a joint distribution on the network.

IThe number of neighbors of a node i will be called the combinatorial degree to distinguish it
from the “weighted” degree k;.
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p(i) = probability on i d(i, j) = distance between i, j
Fig. | The variance of distributions on a graph can be defined with respect to a distance function

between the nodes of the graph. This measure allows us to compare how “spread out” different
distributions are on the network. In the example above, the distributions become more spread
out over the network, going from distribution 1. — 4. with an increasing variance as a result;
here, the variance is calculated with respect to the square root resistance distance as in (2.3).

2.2. (Co)variance with Respect to Node Distances. As introduced above, the
interpretation of a graph distribution is twofold: we can consider it as a signal (func-
tion) on the nodes of a graph (see also [32]) or as representing a random node. In
both cases, it is natural to ask whether a distribution is centered, or concentrated,
on a small part of the graph and thus might be well understood and described by
restricting our attention to this small part, or whether instead the distribution is
spread out over the graph. In the setting of distributions on the real numbers (or
other vector spaces), the variance is a natural quantifier of exactly these properties; it
reflects how spread out a distribution is as the average squared difference between a
random outcome of the distribution and the mean. To generalize this standard notion
of variance to graphs, we propose to take into account distances between nodes in the
graph, i.e., using a function d : N' x A/ — R that says something about “how far”
d(7,7) two nodes ¢ and j are apart in the graph. Given such a distance notion between
nodes, we propose a generalization of variance to distributions on a graph:

(2.1) var(p) = 3 32 pip() (i, 5).

i,JEN

As shown in the supplementary material in section SM1, definition (2.1) is a proper
generalization of the usual variance, which is retrieved if N' C R with the usual
Euclidean distance. We will later discuss a number of examples of distance functions
that illustrate how (2.1) might be used in practice. Figure 1 illustrates how our
notion of variance captures the variance of a graph distribution. In the case of joint
distributions (i.e., pairs of random variables), the covariance is used much in the
same way as the variance to quantify whether random pairs sampled according to
this distribution are on average close together or far apart. Making use of a distance
notion d again, we propose a generalization of the covariance to joint distributions P

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 05/09/22 to 192.76.8.89 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

VARIANCE AND COVARIANCE OF DISTRIBUTIONS ON GRAPHS 347

on a graph:

(22) cov(P) = 5 7 () ~ Pli.) (i, 5).

i,jEN

In section SM1 we show that (2.2) indeed generalizes the usual covariance, which is
retrieved if N C R with the usual Euclidean distance.

In the special case where (N, M) are independent random nodes with distribu-
tions p and ¢, respectively, the joint distribution equals P(i,j5) = p(i)q(j). As a
consequence, we retrieve cov(P) = 0 for independent random nodes. In the case
where one random variable is a copy of the other, the joint distribution is a diagonal
matrix with distribution given by the distribution of the random node on the diago-
nal, and we find cov(P) = var(p). For more examples of joint distributions and their
covariance, see section SM2 of the supplementary material.

2.3. Distance Functions on Graphs. Definitions (2.1) and (2.2) measure the
variance and covariance of distributions on a graph with respect to a certain “distance”
between the nodes. The most famous distance on graphs is the shortest-path distance
(or geodesic distance), where d(i, j) is the length? of the shortest path between two
nodes ¢ and j. In addition to capturing the intuitive notion of a distance between
nodes, the geodesic distance also satisfies the mathematical properties of a metric [5].

Another important metric between the nodes of a graph is the effective resistance
[17, 2, 12, 27]. Similar to the geodesic distance, the effective resistance reflects the
length of the paths between a pair of nodes. However, instead of only taking the
shortest path into account, the effective resistance is influenced by all paths (and their
lengths) between a pair of nodes, and becomes smaller as more paths are available.
Due to this more integrative notion of distance and its nice mathematical properties,
the effective resistance is often preferred over the shortest-path distance when studying
networks. We write w;; for the effective resistance between two nodes 7 and j, and we
define this resistance based on the Laplacian matrix of a graph. The Laplacian matrix
Q of a graph with n nodes is an n x n matrix with entries (Q);; = k; on the diagonal,
(Q)ij = —cij; for all links (7,7), and zero otherwise, and can be used to define the
effective resistance as

wij = (ei — ;)T Q" (ei — ¢)),
where the unit vectors have entries (e;)r = 1 if k¥ = 4, and zero otherwise, and where
Q' is the Moore-Penrose pseudoinverse of the Laplacian. For our application, the
most relevant property is that both w and its square root y/w are metrics between the
nodes of a network [17, 9]. With the choice of the square root effective resistance as
a distance between nodes, the variance and covariance can be written in matrix form
as

(2.3) var, (p) = 1p’ Qp, cov,(P) =

: p"Qq — tr(PQ)],

1
2
with the n x n matrix Q containing the effective resistances having entries (2);; =
wij; P = (p(i),...,p(4))T is the vector containing the probability for all nodes, and
similarly for p,q, and matrix (P);; = P(i,j) contains the probabilities of all pairs

2In the case of unweighted graphs, the length of a path equals the number of links contained in
the path. In the case of weighted graphs, the length of a path is defined as the sum Z(i,j)e’P ci_j
over all links P in the path. From this perspective, the weight between two nodes acts as an affinity,
where larger weights correspond to “better connected” nodes.
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Fig. 2 Hyperlink network of Wikipedia pages of the considered mathematical concepts (see [29]).
The size of a node is proportional to its PageRank, and the color coding corresponds to
communities found using the Louvain algorithm.

of nodes. We will further also use p; to denote an entry of the probability vector
p, which thus equals the probability p(i). Replacing Q2 by another distance matrix
(D);j = d?(i,j) gives the general matrix form for variance and covariance.

3. Variance and Covariance in a Network of Knowledge. As an example ap-
plication, we study a “network of knowledge” made up of mathematical ideas and
results with links between related concepts. The code and data for our analysis are
available on GitHub [23]. We consider a list of mathematical concepts (theorems, lem-
mas, equations) compiled from four Wikipedia pages that list these concepts, and we
infer links between the concepts from hyperlinks between their respective Wikipedia
pages. More information about the data retrieval and filtering of the data set can be
found in [29], where (a higher-order variant of) this network was investigated. The
resulting network of concepts consists of n = 1150 nodes and m = 4109 links and
is shown in Figure 2. We consider this network to be the underlying structure of
the mathematical concepts and use it to investigate how these concepts are used in
practice by their occurrences in scientific papers.

To study the functional aspect of the network of knowledge, we use a corpus of
140k+ papers from the arXiv and the mathematical concepts used therein. For each
paper we count which of the mathematical concepts appear and represent this by a
uniform distribution over the concepts used. Every paper ¢ thus has a corresponding
subset of concepts V; and distribution p(*) uniform over this set of concepts.

A first question we consider is whether the mathematical papers contain “coher-
ent” sets of mathematical concepts. In terms of variance, this question can be ad-
dressed by comparing the variance of the paper distributions p(¥ with a null model,
representing “virtual papers.” Figure 3 shows that the paper distributions generally
have a smaller variance compared to virtual papers made up of randomly sampled
concepts, according to their relative frequency over the full corpus. This observation
is confirmed by performing the one-sided Mann—Whitney U test, from which we find
with high significance (p-values < le-12) that the variance of a paper is typically
smaller than what would be expected from the null model; more details on the test
results are given in section SM3 of the supplementary material. Intuitively, this ob-
servation reflects the idea that the practical use of mathematical concepts is related
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Fig. 3 (Top figure) Distribution of network variances of concept distributions p(i) in papers, cal-
culated with respect to the geodesic distance in the Wikipedia network. In each panel, the
probability density function (pdf) of variances is calculated for papers containing 3 (resp.,
5,7,9) concepts present in the Wikipedia network, and is compared with the variance pdf
for a collection of (null model) virtual papers with the same number of concepts. The em-
pirical variance distributions are concentrated on smaller variances compared to the null
model variances, as confirmed by the one-sided Mann—Whitney U test (see section SM3 of
the supplementary material). (Bottom figure) Distribution of network variances of concept
distributions p*) for arXiv papers from different subfields. The fields are ordered from top
left to bottom right according to concentration on increasing variances, as found from the
Mann—Whitney U test.

to the underlying connections between concepts, where a group of concepts is more
likely to be considered in a paper if that group is coherent, as measured by a small
variance of their corresponding uniform distribution. Furthermore, Figure 3 clearly
indicates a range of “typical” variance values which could be used to identify papers
with exceptionally small (or high) variances. As a second application, the variance of
paper distributions p(¥) could be used as grounds for (qualitative) comparison between
different fields of study. In the bottom plots of Figure 3, for instance, we rank the
different subfields based on their variance distributions, where the distributions on the
top left are concentrated on smaller variances than the distributions on the bottom
right, as quantified by one-sided Mann-Whitney U tests (see GitHub [23] for the test
statistics and p-values). More generally, this type of comparative analysis might be
useful when there are different “modes of operation” of a single network, giving rise
to different functional signals.

On an aggregate level, we can study the corpus of papers by counting the co-
occurrences of pairs of concepts over all papers. This gives a joint distribution P,
where P(i,7) is proportional to the frequency of cooccurrence of concepts i and j. To
test how the function of the network of knowledge relates to its structure, we compare
the covariance of this empirical distribution P on the given graph against two null
models: in the first model the distribution P is left constant but the underlying graph
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Fig. 4 (Left figure) Comparison between empirical covariance of the cooccurrence distribution P on
the Wikipedia network of concepts and two null models. In the left panel, the covariance of
P is calculated with respect to the shortest-path distance on the Wikipedia network (dashed
line) and the shortest-path distance on 100 realizations of a degree-preserving randomization
of the network (solid bars). In the right panel, the covariance of P (dashed line) and of
100 realizations of a marginal-preserving randomization of P (solid bars) are calculated with
respect to the shortest-path distance on the Wikipedia network. (Right table) Correlation of
the joint probability distribution of concepts for papers of different subfields.

is randomized, and in the second model the distribution P is randomized while the
graph is kept constant. Since we are comparing joint distributions with potentially
different marginals, we consider a normalization of the covariance, which corresponds
to the well-known concept of correlation:

corr(P) = COV—(P).

var(p) var(q)

Since the cooccurrence joint probability distribution is symmetric, we have p = ¢,
which means that the correlation is simply calculated as cov(P)/ var(p).

As a first null model, we perform a degree-preserving rewiring [14] of the Wikipedia
network while keeping the joint distribution constant. As seen in the left panel of Fig-
ure 4, measuring the covariance of P with respect to these randomized graphs yields
significantly lower correlation values; this would imply that the empirical correlation is
not simply a consequence of the (local) degree distribution of the network. Our second
null model consists of a marginal-preserving randomization of P leaving the network
intact: we pick two pairs of nodes (7,j) and (¢, ;') with nonzero joint probabilities
and reshuffle their joint probabilities as

T T T T
P—P— a(UijUij + ’Ui'j'vi’j’ - vij,vij/ - vi'jvi’j)’

where v;; = (e; + ¢j)(e; + ;)T and with a uniform random value that is given as
a < min(P(4, ), P(i,7")). In other words, there is a shift of probability mass « from
(i,5) — (i,4") and from (i',j") — (i’,j). We repeat this procedure until all pairs
of nodes have been addressed, which produces a (symmetrically) randomized joint
distribution P’ with the same marginals as P. The right panel in Figure 4 shows that
these randomized joint distributions are concentrated on significantly lower correlation
values. We remark that the empirical covariance is highly atypical for both null model
classes and it is thus likely that these models are discarding too much structure to give
a reliable baseline for the empirical covariance. A further development of appropriate
null models for measuring the covariance on a network would be an interesting line
of further research. We also calculated the cooccurrences for a number of subfields
separately and report their correlations in the table in the right panel in Figure 4.
The above analysis illustrates a practical scenario where data is available in dif-
ferent modalities (i.e., structural and functional) and for which our variance and
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covariance measures enable a unified treatment of this system data. Our framework
is of course not restricted to this specific example, but can be applied in the context
of many other network problems in which a combination of structural and functional
modalities is important.

4. Correspondence between (Co)variances and Existing Graph Measures.
Apart from using the variance to quantify the spread of distributions in real-world
applications, we can also further study (2.1) and (2.2) theoretically. A first interesting
result is that our proposed variance and covariance measures correspond to a num-
ber of existing concepts in graph theory and network science. This provides a new,
probabilistic perspective on these concepts which adds to their understanding.

4.1. Kemeny’s Constant. A random walk on a graph is a process in which a
“random walker” makes its way across the nodes of a network by following the links
in the network with certain probabilities [21, 22, 10]. More precisely, a random walk
describes a sequence of random nodes {N;}:eny where the consecutive random nodes
N;—which represent the position of the random walker at timestep t—are related via
a transition matrix 1" as

Pr(NtJrl = j|Nt = Z) = Tji = Cij/lﬂi.

In other words, the probability that the walker leaves a node via a particular link
is proportional to the weight of that link.? For this type of random walker on a
connected graph, the distribution of N; converges to a unique stationary distribution
7, with probabilities m(i) = k;/(2m), where m = 23"  k;, independently of the
distribution of the initial position of the random walker Ng.

In [16], Kemeny discovered that the time &; it takes on average for a random
walker to go from node ¢ to a random node J ~ 7 (with the stationary distribution)
is independent of the node under consideration; in other words, x; = k is a constant
independent of ¢, which is now called Kemeny’s constant. Following a recent result
on Kemeny’s constant in [36], we find the following relation to a graph variance.

PROPOSITION 4.1. Kemeny’s constant k of a random walker is proportional to
the steady-state variance of that random walker, measured with respect to the square
root effective resistance, as

Kk = 2mvar,, (7).

Proof. Proposition 4.1 follows from expression (2.3) for the graph variance with
respect to the square root effective resistance and the relation between Kemeny's
constant and the resistance matrix k = mn Qr, as derived in [36]. |

One immediate consequence of Proposition 4.1 and the interpretation of Kemeny’s
constant as a variance is that it implies an upper-bound of k < 2mo?, using the
maximum variance results from section 5.

4.2. Kirchhoff Index/Effective Graph Resistance. Apart from serving as a graph
metric, the effective resistance has been used in a variety of applications in different
domains. An important example is the sum of all effective resistances

30ther types of random walks are possible and are defined based on different transition proba-
bilities.
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which is used in mathematical chemistry as a “fingerprint” of a network that rep-
resents a chemical compound—here, R¢ is called the Kirchhoff index [17, 25]—and
is used as a heuristic measure of robustness and connectedness in the characteriza-
tion of (empirical) networks—here, it is called the effective graph resistance [12, 13].
Again, from expression (2.3) for the graph variance, we immediately find the following
correspondence.

PROPOSITION 4.2. The Kirchhoff index or effective graph resistance Rg of a
graph is proportional to the variance of the uniform distribution on that graph, mea-
sured with respect to the square oot effective resistance:

Rg = n?var,(u/n).

Proof. Inserting the uniform distribution (u/n)(i) = 1/n for all ¢ in (2.1) gives
the formula for Rg up to the constant n?, which proves Proposition 4.2. ]

We remark that the uniform distribution also appears naturally as the station-
ary state of diffusion processes on a graph; see section SM10 of the supplementary
material.

4.3. Network Modularity. Similar to the variance, we find that formula (2.2)
for the graph covariance is related to some known expressions in graph theory and its
applications.

In the network science community there has been a large and sustained research
effort in developing methods to identify groups of nodes which are tightly connected
within but poorly connected between groups, i.e., to uncover the so-called community
structure. Many results on this problem have been centered around the concept of
network modularity [24], which assigns a “score” M(g) to each partition g : N —

{1,...,k} of the nodes into k communities,
1 kik;
M(g) = om Z ((A)ij - 2mj> Og(i)9(i)>
i,jEN

with adjacency matrix A which has entries (A4);; = ¢;; for all links, and with the
Kronecker delta defined as d,(;)4(;y = 1 if and only if 7 and j are in the same group. In
section SM4 of the supplementary material we show that the modularity function M
can be interpreted as the covariance of an appropriate joint distribution and distance
function.

PROPOSITION 4.3. The network modularity M(g) of a node partitioning g is equal
to the covariance of the ends of a random link of the graph, with distribution P(i,j) =
cij/2m and with respect to the distance dg = (1 — dg0:)4(j))-

M(g) = 2covg, (P).

Proof. See section SM4 of the supplementary material. ]

Proposition 4.3 shows that the usual interpretation of network modularity is well
reproduced in the setting of covariances: for a proposed partitioning g, the covariance
covg, (P) measures how likely it is that a random link will fall within one of the
groups instead of between two different groups. A high covariance thus reflects a
good partitioning, in correspondence with the interpretation of a high modularity
M(g). In section SM4 we show that a generalization of the modularity function, the
Markov stability [8], also has a natural interpretation as a covariance.
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5. Maximum Variance Distributions. We now discuss a number of properties
of the variance measured with respect to the square root effective resistance, and
consider the problem of finding the largest possible variance on a given graph. It
will be useful to consider the variance as a function on the collection of all possible
distributions (also called the probability simplex),

n
Ané{peR":piEOand Zpizl},

i=1

as vary, : A, — R defined by var,(p) = %pTQp7 where we fix an ordering of the nodes
into the columns and rows of the effective resistance matrix 2. We remark that distri-
butions with p; = 1 for a single element i (and thus zero otherwise) correspond to the
extreme points of A,,; also called the vertices. We find the following characterization
of the variance function for a certain graph on the probability simplex A,,.

PROPOSITION 5.1. The variance is strictly concave on A, and bounded by 0 <
var,, (p) < 2. The minimum variance 0 is attained if and only if the distribution is a
vertex of A, and the mazimum variance o2 is attained by a unique distribution p*.

Proof. Strict concavity of the variance is proven in section SM5 of the supple-
mentary material based on the definition of the effective resistance in terms of the
Laplacian matrix. This concavity means that for any two distinct distributions p
and q, the convex combination of these distributions 0p + (1 — 6)q for 6 € (0,1) has
a higher variance than the corresponding convex combinations of their variances; in
other words,

var, (0p + (1 — 0)q) > Ovar,(p) + (1 — 0) var,(q).

For the vertices p; of A,, we immediately find that var(p;) = w;;/2 = 0. Furthermore,
since any other distribution (i.e., not equal to a vertex) can be written as a strict
convex combination of vertices, the strict concavity of the variance says that no other
distribution can have variance zero, showing that the minimum is only attained for
vertices of A,,. Next, since all effective resistances and all possible distributions are
finite, the variance must be bounded from above by some value o2 which is attained
by at least one distribution p*. If another distribution q* were also to attain this
maximum, we would find by strict concavity that var,((p* + q*)/2) > var,(p*);
since this contradicts the maximality of p*, the maximum variance distribution is
necessarily unique. 0

Proposition 5.1 thus states that there is a unique solution to the maximum vari-
ance problem

1
(5.1) maximize ipTQp
subject to p € A,,.

We write the mazimum variance as o2 and the mazimum variance distribution that
attains it as p*. The support of the maximum variance distribution will be denoted
by V* = {i : p; > 0}.

Numerical Solution. From Proposition 5.1 we know that the objective function
of (5.1) is concave. Moreover, the optimization domain A,, is convex, which means
that the maximum variance problem (5.1) on a graph is a convex quadratic program
and can be solved numerically in a number of steps which is polynomial in the size n of
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the graph [4]. In other words, the maximum variance problem can be solved efficiently.
This result was shown before in [11] in the context of calculating the average weighted
resistance distance on a graph. In section SM8 of the supplementary material, we
discuss how the maximum variance problem can be solved in practice using standard
convex programming packages.

Analytical Solution. Apart from finding the maximum variance o2 and corre-
sponding distribution p* numerically, we can further characterize this solution in
terms of a number of necessary and sufficient conditions for p*. As we will show,
these conditions allow us to calculate exactly the maximum variance distribution (or
its support) for a number of specific graph examples.

PROPOSITION 5.2. The mazimum wvariance distribution p* with respect to the
square Toot effective resistance is the unique vector that satisfies the conditions

(Ch) p € A, with support V,
(Cy) Qyuypy = 2var,(p)u,
(C3) Qyeypy < 2var, (p)u,

where (Q) ap denotes a submatriz of Q with row (resp., column) indices in the set
A (resp., B), (p)v is a subvector of p with indices in V, and with all-one vector
u=(1,...,1)7

Proof. Proposition 5.2 is proven in section SM6 of the supplementary material
in two ways: first, we derive (Cy), (C3), and (C3) as necessary conditions for the
maximum variance distribution, and then we show that they are also sufficient by
concavity of the variance. As a second derivation, we show that the conditions
are equivalent to the Karush-Kuhn—Tucker conditions of the optimization problem
(5.1). a0

While conditions (C7)—(C3) might not look very intuitive at first sight, we can
interpret them as follows: condition (C7) is a basic feasibility criterion which states
that p* must be a valid distribution supported on some set of nodes V. Condition
(Cs) is a local optimality criterion (local with respect to V) which guarantees that the
variance of p* can only decrease if we slightly change its distribution without changing
the support V. Condition (C3) is finally a global optimality criterion (global with
respect to V) and guarantees that slightly changing the distribution of p* and changing
its support can only result in a decreasing variance. Clearly these are necessary
conditions, but as shown in section SM6, they are also sufficient and thus characterize
the maximum variance distribution.

Maximum Variance Support V*. Proposition 5.2 gives an exact description of
what the maximum variance distribution looks like for a given graph; more details on
the solution to (Cy) specifically can be found in section SM9 of the supplementary
material. Somewhat surprisingly, the maximum variance distribution can (and often
will) have zero probability for a subset of the nodes. Intuitively, this means that when
looking for a distribution that is most spread out, some nodes are too central in the
network (i.e., too close on average to other nodes) and are assigned zero probability as
a consequence. The remaining nodes that are in the maximum variance support V*,
on the other hand, are peripheral (or boundary) nodes whose distance to other nodes
is sufficiently large to contribute to a high variance. By considering the maximum
variance distribution, we thus have a procedure to “single out” a subset of nodes V*
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from a given graph G, which can be interpreted as a set of nodes near the boundary
or periphery of the graph.* In section SM7 of the supplementary material we provide
further theoretical support for this interpretation by characterizing V* on some simple
graphs: trees, weighted stars, configuration graphs, node-transitive graphs, and paths,
for which the maximum variance support indeed corresponds to the intuitive set of
peripheral nodes.

As mentioned in the introduction, our formula for variance also appears in the
context of diversity measures, where it is a special case of Rao’s quadratic entropy
[28] and relates to the Rényi entropy of order 2 when all nodes are assumed indis-
tinguishable (i.e., in a complete graph). In the work of Leinster et al. [20, 19], these
measures were further generalized to a family of diversity measures div, on A,, that
encompasses several other well-known measures such as the Gini-Simpson index, and
our variance fits in this framework® as dive(p) = (1 — 2var(p))~!. This relation is
particularly relevant in the context of problem (5.1), since it was shown [19, Thm.
6.3.2] that every similarity space has a unique distribution that mazimizes the di-
versity measure div, for all ¢ € [0,00] simultaneously, which thus implies that the
maximum variance distribution p* maximizes a whole family of diversity measures.

5.1. Maximum Variance Support in Random Geometric Graphs. The results
in the previous section and the supplementary material provide theoretical support
for the interpretation that the maximum variance support indicates some sort of
periphery or boundary of a graph. Here, we provide another result in this vein by
considering random geometric graphs (RGGs), which are naturally embedded in some
Euclidean space and have a well-defined boundary.

For a set of points A" C R? in the plane, we define the e-graph G, as a graph with
nodes A and with pairs of nodes linked if and only if they are closer than a certain
distance ¢ > 0 from each other in the plane (the connection radius). A random
geometric graph on a subset X C R? of the plane is then determined by sampling n
points uniformly at random from X (or via a Poisson point process with a certain
rate) and constructing the corresponding e-graph. For more details and more general
constructions, see, for instance, [26].

In Figure 5 we show experimentally that the maximum variance support nodes of
a random geometric graph on a domain X tend to be located close to the boundary
of this domain. Moreover, this observation seems to hold quite robustly for different
parameter settings of the experiment (number of points, connection radius, and shape
of the domain). We cannot provide a conclusive theoretical explanation of the obser-
vations in Figure 5, but we believe it could be related to the results of von Luxburg,
Radl, and Hein [34, 35]. Their work shows that in certain regimes of (e, n), the effec-
tive resistances in a random geometric graph will be approximately w;; ~ k;” 4 k:j_l,
i.e., as in a configuration graph (see section SM7). Consequently, we might conjecture
that the maximum variance support in this regime converges according to the result
described in Corollary SM7.3 for configuration graphs in the supplementary material,
and that the maximum variance support will thus consist of low-degree nodes. As

40ur use of the term “peripheral” to describe the (geometric) notion of a boundary is different
from its use in the context of core-periphery structures, where it is reserved to describe nodes a
certain mesoscale connectivity structure in a graph. While in some cases these might overlap, this
is certainly not guaranteed; tree graphs, for instance, can lack a core-periphery structure, but they
clearly possess a boundary made up of the leaf nodes.

S5Instead of describing diversity with respect to distances between points, the framework of
Leinster et al. starts from similarities between points. As mentioned in [19], one possible mapping is
“similarity = 1-distance,” giving rise to a similarity matrix of uu? — Q in our case.
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Fig. 5 The mazimum variance support of random geometric graphs (RGGSs) in a bounded domain
is more likely to contain nodes which are located near the boundaries. Panel (a) shows
one realization of an RGG on n = 500 nodes in a domain shaped as the letter “A,” with
connection radius as indicated. The nodes in the maximum variance support are colored red,
and are all located near the boundary of the domain. Panel (b) summarizes the mazimum
variance support node locations calculated in 250 independent RGG realizations on the given
domains. A darker (resp., lighter) shading indicates a higher (lower) density of mazimum
variance nodes. This figure seems to confirm that the mazimum variance support nodes are
more likely to be located near the domain boundaries and, in particular, near corners with
“high curvature.”

these low-degree nodes are more likely to be located at the boundary of the domain
(due to the Poisson distribution property of Poisson point processes) the maximum
variance support nodes would thus indeed be more likely to be close to the domain
boundaries. Developing a full theoretical understanding of our observations (poten-
tially following our guesses above), perhaps extending them to RGGs on manifolds
(the setting of [35]), and further investigating the role of curvature (points near a
highly curved boundary will likely have small degrees) seems to be a particularly
interesting venue for further research.

5.2. Application: k-Core Decomposition from the Maximum Variance Sup-
port. The k-core decomposition is a network analysis tool which is used to visualize
large graphs, identify clusters of important nodes, or map the hierarchical structures
in a network [1, 31]. This decomposition divides the nodes of a network into (overlap-
ping) subgraphs by recursively deleting nodes with the smallest degree from a graph
until all remaining nodes have at least a certain degree k: starting from k = 1, all
nodes are in the 1-core; then all nodes of degree one are removed consecutively until
all remaining nodes have degree two, which makes up the 2-core. This process is
repeated until no nodes remain.

We now consider an adaptation of the k-core decomposition by consecutively
removing the boundary nodes, defined as the maximum variance support. This pro-
cedure gives a recursive definition of the kth core C, C N as

l-core: C1 = N,

k-core: Cp, = Cr—1\V*(Gj—1) for k > 1,
where G}, is the induced subgraph on the nodes Cr. When a subgraph Gy is discon-
nected, the maximum variance support is calculated for each connected component

separately. The coreness ¢; of a node is determined by the “highest” core it is part of,
as ¢; = argmax{i € Cy}. Figure 6 illustrates the k-core decomposition on some net-
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Fig. 6 The iterated core-periphery decomposition divides the nodes of a graph into layers of increas-
ing centrality or “coreness.” The figure above shows the coreness ¢; of nodes in the karate
club network (obtained from the KONECT database [18]) and four random geometric graphs
(see section 5.1).

works, which shows that our adapted decomposition can fulfill a similar visualization
or summarization role as the standard one.

6. Conclusion. In this paper, we have introduced two new measures which allow
us to calculate the variance and covariance of distributions defined on the nodes of a
network, as a generalization of the standard (co)variance. These measures take into
account the underlying structure of the network in the form of distance between nodes,
thus providing a tool in the study of functional properties of the network (distribu-
tions, signals,...) relative to the underlying structure of the network. Furthermore,
the variance and covariance take the simple forms of a quadratic product and matrix
trace, respectively, which are easily calculated using standard linear algebra solvers.
To support the specific forms of our introduced variance and covariance measures,
we have shown that their definitions specialize to a number of known graph charac-
teristics and heuristics developed in network science and that there is a conceptual
correspondence between our (co)variance measures and these graph characteristics.
We have furthermore used the variance and covariance in a practical scenario
where both structural and functional data of a networked system are known. We
analyzed a “network of knowledge” consisting of mathematical concepts as nodes and
links inferred from hyperlinks on Wikipedia. Based on a corpus of 140k+ papers on the
arXiv, we then analyzed how this network of knowledge is used in practice. We trans-
lated the occurrences and cooccurrences of concepts in these papers into distributions
and joint distributions on the network, and showed that the corresponding variance
is smaller, on average, compared with a “virtual paper” null model and, similarly,
that the corresponding covariance is larger, on average, compared with a randomized
null model. Beyond this particular setting, our framework has many potential appli-
cations in fields like neuroscience, to characterize the relationship between structural
and functional brain networks in terms of covariance; or in economics, where vari-
ance can be used as a measure of economic diversity; or in social networks, where the
variance of certain distributions could be interpreted as a measure of polarization.
In the second part of this paper, we considered the variance on a graph measured
with respect to the square root effective resistance distance. In this case, the variance
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is a strictly concave function over the set of possible distributions A,, and there is
a unique maximizing distribution. We gave a detailed description of the mazimum
variance problem and the numerical and theoretical approaches to finding the max-
imum variance distribution p*. We highlighted the interesting observation that, in
general, the maximum variance distribution is supported on a subset of the nodes
V*, which can be interpreted as a set of peripheral/boundary nodes of the underlying
graph. This interpretation is supported by analyzing a number of simple graphs such
as trees and configuration-like graphs. Additional experimental evidence is found by
considering random geometric graphs where we found that the maximum variance
support nodes are most likely situated near the boundaries of the domain of the ge-
ometric graphs. Following the interpretation of the maximum variance support as
a set of peripheral nodes, we proposed an application of V* in calculating a k-core
decomposition of networks.

While the theoretical analyses in this article focus on measuring variance with
respect to the effective resistance, we stress that definitions (2.1) and (2.2) work
for any distance function on a graph, and in many cases distances other than the
resistance distance are likely to be more natural.
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